###############################################################
 ###############################################################
 ###############################################################
 ### CCP4 7.0.045: ctruncate        version 1.17.27 : 14/08/17##
 ###############################################################
 User: jfraser  Run date:  8/11/2017 Run time: 15:00:22 


 Please reference: Collaborative Computational Project, Number 4. 2011.
 "Overview of the CCP4 suite and current developments". Acta Cryst. D67, 235-242.
 as well as any specific reference in the program write-up.




USER SUPPLIED INPUT:

hklin 	/Users/jfraser/METHODS_XIA2/apo/DEFAULT/scale/AUTOMATIC_DEFAULT_scaled.mtz
hklout 	/Users/jfraser/METHODS_XIA2/apo/DEFAULT/scale/NATIVE_truncated.mtz
colin 	/*/*/[IMEAN,SIGIMEAN]
xmlout 	/Users/jfraser/METHODS_XIA2/apo/DEFAULT/scale/42_truncate.xml

** JQ

Reflection File INFO:

Reflection file name: /Users/jfraser/METHODS_XIA2/apo/DEFAULT/scale/AUTOMATIC_DEFAULT_scaled.mtz
Crystal/dataset names: /DEFAULT/NATIVE
Spacegroup: P 43 2 2 (number   95)
Cell parameters:    73.9200    73.9200   110.0000    90.0000    90.0000    90.0000

Reflection Data INFO:

Reflection data type: I_sigI
Number of observations (including Freidal mates): 37101
Number of unique reflections (excluding Freidal): 37101 (Acentric: 32526, Centric: 4575)
Resolution range of data: 33.058 - 1.650 A
Maximum index h (a*): 44 (1.680 A)   - by symm. -  44 (1.680 A)
Maximum index k (b*): 31 (2.385 A)   - by symm. -  44 (1.680 A)
Maximum index l (c*): 63 (1.746 A)   - by symm. -  63 (1.746 A)



Estimated Optical Resolution: 1.576




COMPLETENESS ANALYSIS (using intensities):

The following uses I/sigI Completeness levels, in particular targeting completeness above 85%.  The Completeness with I/sigma above 3 indicates a strong signal (A better estimate is available using CC1/2 in aimless).

   I/sigI>N            range(A)      %refln
    15.0            33.06 -  2.95     18.9  
    10.0            33.06 -  2.64     25.7  
     5.0            33.06 -  2.26     40.5  
     3.0            33.06 -  2.06     52.7  ***
     2.0            33.06 -  1.97     60.8  
     1.5            33.06 -  1.91     64.9  
     1.0            33.06 -  1.87     68.9  
     N/A            33.06 -  1.65

The resolution range with I/sigI > 3 with completeness above 0.85, the estimated strong data resolution range of this data, is  33.06A to   2.06A.
  This corresponds to approximately  52% of the reflections in the file.


$TABLE: Intensity Completeness analysis:
$GRAPHS: Completeness & (I/sigI)>N v resolution:N:1,2,3,4,5,6,7,8:
: Completeness & Rstandard v resolution:N:1,2,9:
$$ 1/resol^2 Completeness (I/s>15) (I/s>10) (I/s>5) (I/s>3) (I/s>2) (I/s>1) Rstandard$$
$$
    0.0110   0.989        0.960    0.979    0.988   0.989   0.989   0.989    0.000
    0.0243   1.000        0.962    0.989    0.995   0.999   0.999   0.999    0.000
    0.0351   1.000        0.977    0.992    0.995   0.998   0.998   1.000    0.000
    0.0446   0.998        0.973    0.993    0.995   0.996   0.996   0.996    0.000
    0.0532   1.000        0.982    0.997    0.999   1.000   1.000   1.000    0.000
    0.0612   0.998        0.980    0.993    0.997   0.997   0.997   0.997    0.000
    0.0688   1.000        0.982    0.995    0.998   0.998   1.000   1.000    0.000
    0.0760   1.000        0.969    0.990    0.993   0.998   0.998   1.000    0.000
    0.0829   1.000        0.965    0.989    0.994   0.996   0.998   1.000    0.000
    0.0896   0.997        0.970    0.991    0.993   0.993   0.993   0.995    0.000
    0.0961   0.995        0.939    0.983    0.988   0.989   0.993   0.993    0.000
    0.1024   1.000        0.946    0.983    0.994   0.997   0.997   0.999    0.000
    0.1085   1.000        0.895    0.965    0.979   0.989   0.993   0.995    0.000
    0.1144   0.996        0.912    0.958    0.984   0.986   0.987   0.990    0.000
    0.1201   0.999        0.915    0.960    0.980   0.985   0.988   0.994    0.000
    0.1259   0.999        0.876    0.952    0.977   0.987   0.988   0.994    0.001
    0.1314   1.000        0.871    0.948    0.975   0.982   0.987   0.992    0.001
    0.1368   0.998        0.864    0.954    0.975   0.982   0.983   0.988    0.001
    0.1422   1.000        0.854    0.932    0.969   0.980   0.988   0.988    0.001
    0.1474   1.000        0.841    0.932    0.963   0.974   0.982   0.985    0.001
    0.1526   1.000        0.815    0.924    0.953   0.979   0.984   0.986    0.001
    0.1577   0.997        0.799    0.907    0.949   0.964   0.971   0.984    0.001
    0.1627   0.999        0.819    0.928    0.959   0.968   0.978   0.991    0.001
    0.1676   1.000        0.788    0.901    0.948   0.967   0.973   0.989    0.001
    0.1725   1.000        0.787    0.894    0.925   0.954   0.972   0.983    0.001
    0.1773   0.999        0.724    0.887    0.939   0.965   0.968   0.981    0.001
    0.1820   0.998        0.733    0.886    0.945   0.967   0.973   0.980    0.001
    0.1868   1.000        0.701    0.874    0.935   0.967   0.972   0.978    0.002
    0.1914   0.998        0.721    0.866    0.929   0.951   0.964   0.976    0.002
    0.1959   1.000        0.677    0.847    0.911   0.951   0.960   0.975    0.002
    0.2005   0.999        0.675    0.825    0.878   0.929   0.949   0.972    0.002
    0.2049   0.998        0.645    0.826    0.919   0.951   0.964   0.974    0.002
    0.2094   0.998        0.615    0.796    0.881   0.939   0.948   0.960    0.003
    0.2138   0.996        0.647    0.835    0.890   0.930   0.952   0.961    0.003
    0.2182   1.000        0.609    0.827    0.898   0.953   0.974   0.980    0.003
    0.2225   0.997        0.591    0.803    0.895   0.930   0.952   0.960    0.003
    0.2267   0.998        0.523    0.777    0.878   0.912   0.932   0.945    0.004
    0.2309   0.997        0.513    0.756    0.869   0.902   0.932   0.952    0.003
    0.2352   1.000        0.472    0.743    0.848   0.898   0.931   0.954    0.004
    0.2394   0.998        0.511    0.767    0.848   0.880   0.932   0.952    0.004
    0.2434   0.997        0.446    0.711    0.844   0.904   0.934   0.963    0.004
    0.2476   1.000        0.385    0.683    0.807   0.883   0.909   0.937    0.005
    0.2517   0.995        0.395    0.667    0.768   0.851   0.888   0.933    0.006
    0.2557   1.000        0.332    0.653    0.802   0.861   0.905   0.939    0.007
    0.2597   0.992        0.307    0.618    0.770   0.844   0.877   0.923    0.007
    0.2637   1.000        0.262    0.576    0.751   0.841   0.874   0.919    0.008
    0.2676   0.994        0.271    0.567    0.735   0.837   0.880   0.919    0.009
    0.2715   0.996        0.190    0.538    0.708   0.807   0.852   0.900    0.011
    0.2754   1.000        0.206    0.496    0.688   0.798   0.847   0.903    0.011
    0.2793   0.988        0.186    0.502    0.675   0.766   0.815   0.870    0.012
    0.2831   1.000        0.177    0.461    0.660   0.753   0.800   0.869    0.014
    0.2869   0.994        0.133    0.421    0.598   0.723   0.765   0.823    0.017
    0.2907   0.993        0.106    0.392    0.579   0.696   0.751   0.822    0.019
    0.2945   0.999        0.093    0.355    0.546   0.694   0.775   0.839    0.020
    0.2983   0.988        0.065    0.318    0.523   0.618   0.701   0.779    0.026
    0.3020   0.999        0.042    0.301    0.548   0.677   0.736   0.821    0.025
    0.3057   0.998        0.047    0.286    0.485   0.636   0.714   0.806    0.027
    0.3094   0.985        0.026    0.266    0.462   0.614   0.684   0.759    0.029
    0.3130   0.998        0.030    0.267    0.487   0.633   0.693   0.772    0.028
    0.3166   0.997        0.006    0.215    0.414   0.563   0.648   0.738    0.041
    0.3203   0.986        0.012    0.204    0.380   0.514   0.611   0.718    0.040
    0.3239   0.999        0.010    0.156    0.333   0.519   0.603   0.710    0.061
    0.3275   0.995        0.002    0.123    0.329   0.455   0.567   0.695    0.053
    0.3310   0.984        0.004    0.149    0.329   0.466   0.553   0.682    0.055
    0.3345   0.995        0.004    0.094    0.310   0.453   0.551   0.675    0.063
    0.3382   0.992        0.000    0.092    0.280   0.448   0.538   0.663    0.063
    0.3416   0.982        0.000    0.058    0.200   0.349   0.470   0.590    0.076
    0.3451   0.985        0.000    0.070    0.223   0.369   0.479   0.636    0.072
    0.3486   0.979        0.000    0.039    0.158   0.315   0.415   0.533    0.098
    0.3521   0.971        0.000    0.031    0.120   0.278   0.383   0.533    0.096
    0.3555   0.965        0.000    0.026    0.137   0.275   0.373   0.522    0.101
    0.3589   0.966        0.000    0.026    0.100   0.228   0.335   0.480    0.112
    0.3623   0.940        0.000    0.012    0.080   0.206   0.297   0.457    0.119
    0.3657   0.893        0.000    0.001    0.056   0.176   0.284   0.416    0.141
$$

The completeness at various resolution limit plots gives the completeness after applying a I/sigI cutoff.  The profiles give an indication of the quality of the data.  The Rstandard plot (/) gives an alternative indicator.  Strongly recorded resolution bins would typically have values below 0.1.

Low Resolution Intensity Completeness analysis:
   1/resol^2    Range         Completeness 
    0.0034   0.000-0.006   0.941 [61.0:64.8]
    0.0075   0.006-0.009   0.993 [74.5:75.0]
    0.0110   0.009-0.013   1.000 [79.9:79.9]
    0.0141   0.013-0.016   1.000 [83.0:83.0]
    0.0169   0.016-0.018   1.000 [82.5:82.5]
    0.0195   0.018-0.021   1.000 [84.0:84.0]
    0.0220   0.021-0.023   1.000 [83.4:83.4]
    0.0243   0.023-0.025   1.000 [87.2:87.2]
    0.0267   0.025-0.028   1.000 [87.2:87.2]
    0.0288   0.028-0.030   0.993 [85.6:86.2]


Low completeness at low resolution can lead to map distortions and other difficulties.  This often arises through experimental effects such as incorrectly alligned crystal, poorly positioned backstop, or over exposure.


ICE RING SUMMARY:

 reso  ice_ring  mean_I mean_Sigma Estimated_I   Ratio Zscore Completeness Ave_Completeness
 3.90   no      4178.58      96.07     4502.90    0.93  -3.38        1.00     1.00
 3.67   yes     3650.99      84.13     4140.92    0.88  -5.82        1.00     1.00
 3.44   no      3033.93      71.32     2959.41    1.03   1.04        1.00     1.00
 2.67   no       626.96      20.59      603.10    1.04   1.16        1.00     1.00
 2.25   no       318.30      15.51      292.49    1.09   1.66        1.00     1.00
 2.08   no       182.95      12.71      164.59    1.11   1.44        0.99     1.00
 1.95   no        96.45      11.36       96.85    1.00  -0.04        1.00     0.99
 1.92   no        81.69      11.31       84.26    0.97  -0.23        0.99     1.00
 1.89   no        69.01      10.66       69.98    0.99  -0.09        0.99     1.00
 1.72   no        18.43       8.05       18.72    0.98  -0.04        1.00     0.98

The ice rings table shows data Z-scores and completeness for ice ring sensitive resolutions in comparison with neighbouring ice-ring insensitive resolutions. Large z-scores and low completeness at give a strong hint to the presence of ice rings. It may be required to exclude these resolution ranges. 



WILSON SCALING:

Estimated number of residues = 217

Results Wilson B-factor:

Estimate of Wilson B factor: 25.677 A^(-2), with sigma  1.370
Estimate of scale factor on intensity =    78.4245 (intercept -4.362, sigma  0.120)


The isotropic Wilson temperature estimate (B-value) is an approximation to the fall-off of scattering with resolution.  This should be correlated with the refined atomic B-values.  This averages out any anisotropy in the experimental observations.  This approximation will be misleading for strongly anisotropic data.

$TABLE: Wilson plot:
$GRAPHS: Wilson plot - estimated B factor =  25.7 :A:1,2,3:
$$ 1/resol^2 ln(I/I_th) Reference_prot $$
$$
   0.01253   -4.58879   -4.55093 
   0.02830   -5.29931   -5.19194 
   0.04068   -4.69191   -4.72608 
   0.05155   -4.38983   -4.52189 
   0.06144   -4.65135   -4.62147 
   0.07065   -4.73088   -4.75450 
   0.07936   -4.83711   -4.90680 
   0.08764   -5.04250   -5.07790 
   0.09563   -5.19368   -5.28919 
   0.10328   -5.49286   -5.47806 
   0.11059   -5.64650   -5.64118 
   0.11783   -5.71880   -5.80358 
   0.12485   -5.95854   -5.95060 
   0.13163   -6.23819   -6.07851 
   0.13826   -6.28763   -6.17496 
   0.14480   -6.34535   -6.25927 
   0.15114   -6.31534   -6.34416 
   0.15738   -6.36610   -6.42917 
   0.16354   -6.42038   -6.49024 
   0.16950   -6.54743   -6.55629 
   0.17548   -6.63915   -6.60798 
   0.18126   -6.68683   -6.65606 
   0.18708   -6.72754   -6.70870 
   0.19271   -6.78720   -6.75513 
   0.19832   -6.73922   -6.80451 
   0.20377   -6.88014   -6.86479 
   0.20926   -6.99870   -6.92932 
   0.21461   -6.90662   -6.99683 
   0.21995   -7.03015   -7.06256 
   0.22529   -7.10989   -7.11458 
   0.23042   -7.15893   -7.18467 
   0.23562   -7.31143   -7.27669 
   0.24068   -7.25189   -7.35470 
   0.24572   -7.37436   -7.43447 
   0.25078   -7.45275   -7.52289 
   0.25567   -7.62178   -7.61261 
   0.26060   -7.63310   -7.70457 
   0.26556   -7.73987   -7.80075 
   0.27033   -7.81373   -7.89842 
   0.27513   -7.90164   -7.98945 
   0.27994   -7.97572   -8.07502 
   0.28462   -8.12101   -8.15667 
   0.28932   -8.20047   -8.24858 
   0.29395   -8.36709   -8.33714 
   0.29852   -8.49576   -8.41583 
   0.30313   -8.55540   -8.50189 
   0.30772   -8.61897   -8.58059 
   0.31217   -8.61729   -8.64887 
   0.31666   -8.85077   -8.71716 
   0.32123   -8.89742   -8.78872 
   0.32559   -9.03015   -8.85162 
   0.33004   -9.04982   -8.90747 
   0.33441   -9.10314   -8.96337 
   0.33886   -9.19164   -9.02853 
   0.34311   -9.27722   -9.09013 
   0.34745   -9.32309   -9.15360 
   0.35189   -9.37478   -9.22282 
   0.35622   -9.41595   -9.27965 
   0.36053   -9.45876   -9.32596 
   0.36503   -9.57550   -9.37232 
$$

Computed using Popov & Bourenkov, Acta D (2003) D59, 1145

The wilson plot shows the fall off of the mean intensity with resolution.   This is then used calculate an absolute scale and temperature factor for a set of observed intensities, using the theory of A C Wilson.  The reference_plot is based upon an analysis of high resolution datasets in the PDB (BEST), which takes into account the none random distribution of atoms within the crystal.  Some deviation from the reference plot is to be expected, however, significant deviation may indicate problems, such as ice rings, detector issues, or missprocessed.


OUTLIER RING SUMMARY:

Outliers total   5.9% of the bins.

 reso    mean_I mean_Sigma Estimated_I  Ratio Zscore Completeness Ave_Completeness
 6.61   2786.88      65.50     3372.88   0.83  -8.95     1.00     0.99
 4.81   6276.31     133.12     5139.61   1.22   8.54     1.00     1.00
 4.62   4449.88     101.73     5488.78   0.81 -10.21     0.97     1.00
 4.46   6748.70     152.26     5603.07   1.20   7.52     1.00     1.00
 4.32   6671.69     168.72     5276.21   1.26   8.27     1.00     1.00
 3.15   1495.94      38.72     1772.73   0.84  -7.15     1.00     1.00
 2.81    706.85      23.44      874.43   0.81  -7.15     1.00     1.00
 2.79    697.32      22.18      848.17   0.82  -6.80     1.00     1.00
 2.76    560.03      19.23      811.39   0.69 -13.07     1.00     1.00
 2.62    487.48      17.68      605.24   0.81  -6.66     1.00     1.00
 2.52    631.27      20.55      505.20   1.25   6.13     1.00     1.00

 The outlier rings table shows data Z-scores and completeness for problem resolution bins in comparison with the Wilson B-factor fit. Large z-scores and low completeness at give a strong hint to the presence of problems. It may be required to exclude these resolution ranges.




TRANSLATIONAL NCS:

No translational NCS detected (with resolution limited to  4.00 A)

The analysis uses the peak heights in the patterson map that are further than 14 A (approx. 4 Ca-Ca) from the origin.  The presence of a large off origin peak (above 20%) and/or a very low Q-score, below 1.0, is a string indicator of the presence of tNCS.  An intermidiate Q-score, between 5.0 and 1.0, may indicate weak tNCS or be the result of cross vector of a large scatterer such as a cluster or heavy metal.

Reference: P. Zwarts CCP4 Newsletter 42




ANISOTROPY ANALYSIS:

Analysis using data from  33.06A to   2.06A.

Eigenvalues:  23.7514  23.7514  30.3751
Eigenvalue ratios:   0.8455   0.8455   1.0000

Some anisotropy detetect.  This may have an effect on statistics.
The presence of anisotropy may indicate that the crystal is poorly ordered along one of the axes.

Anisotropic B scaling (orthogonal coords):

|  23.751435   0.000000   0.000000 |
|   0.000000  23.751435   0.000000 |
|   0.000000   0.000000  30.375094 |

Anisotropic U (orthogonal coords):

|   0.601631   0.000000   0.000000 |
|   0.000000   0.601631   0.000000 |
|   0.000000   0.000000   0.769410 |

Eigenvector breakdown:

Eigenvalue  Eigenvector(a*,b*,c*)
  0.601631 (   1.000000   0.000000   0.000000 )
  0.601631 (   0.000000   1.000000   0.000000 )
  0.769410 (   0.000000   0.000000   1.000000 )

Anisotropic correction (orthogonal coords):

|  -0.028238   0.000000   0.000000 |
|   0.000000  -0.028238   0.000000 |
|   0.000000   0.000000   0.056477 |

$TABLE: Intensity statistics:
$GRAPHS: Mn(I) v resolution:N:1,2,3,4,5:
: Mn(I/sd) v resolution:N:1,6,7,8,9:
: No. reflections v resolution:N:1,10,11,12,13:
$$ 1/resol^2 Mn(I(1)) Mn(I(2)) Mn(I(3)) Mn(I) Mn(I/s(1)) Mn(I/s(2)) Mn(I/s(3)) Mn(I/s)     N(1)     N(2)     N(3)     N$$
$$
   0.0182  5065.73  5065.73  2889.47  4626.00    36.90      36.90      31.11      36.52   2224.0   2224.0   2544.0  16144.0
   0.0400  5561.84  5561.84  3475.13  4562.72    38.37      38.37      34.88      38.18   2200.0   2200.0   2384.0  16096.0
   0.0573  6764.13  6764.13  3780.48  5510.69    35.11      35.11      35.24      37.42   2152.0   2152.0   2416.0  16208.0
   0.0726  4304.22  4304.22  2780.41  3951.77    37.62      37.62      32.96      37.17   2184.0   2184.0   2368.0  16192.0
   0.0864  3090.89  3090.89  1651.91  2842.04    35.42      35.42      31.38      35.44   2176.0   2176.0   2368.0  16160.0
   0.0994  2421.90  2421.90  1079.48  1892.67    34.41      34.41      27.32      32.73   2168.0   2168.0   2320.0  16176.0
   0.1115  1641.45  1641.45  1035.00  1385.33    28.28      28.28      26.25      28.94   2208.0   2208.0   2320.0  16048.0
   0.1231  1155.17  1155.17   613.61   988.33    25.26      25.26      22.82      26.07   2184.0   2184.0   2304.0  16224.0
   0.1342   843.41   843.41   426.33   662.87    26.20      26.20      19.96      23.86   2168.0   2168.0   2256.0  16096.0
   0.1448   726.22   726.22   340.04   583.65    25.37      25.37      18.17      22.96   2064.0   2064.0   2320.0  16176.0
   0.1552   736.47   736.47   302.71   552.40    24.79      24.79      16.43      21.77   2240.0   2240.0   2272.0  16208.0
   0.1652   631.15   631.15   275.69   467.58    23.14      23.14      15.47      20.37   2152.0   2152.0   2384.0  16160.0
   0.1750   622.23   622.23   211.57   385.82    22.97      22.97      13.08      18.50   2200.0   2200.0   2272.0  16160.0
   0.1844   433.72   433.72   158.19   336.55    17.93      17.93      11.54      16.64   2128.0   2128.0   2192.0  16144.0
   0.1937   391.65   391.65   182.12   311.48    15.82      15.82      12.62      15.67   2096.0   2096.0   2304.0  16032.0
   0.2027   407.58   407.58   144.94   280.58    17.79      17.79      10.88      14.72   2248.0   2248.0   2208.0  16144.0
   0.2116   316.56   316.56   168.14   243.66    16.10      16.10      10.92      13.81   2128.0   2128.0   2320.0  16144.0
   0.2203   274.83   274.83   145.17   220.04    14.84      14.84      10.18      13.16   2152.0   2152.0   2272.0  16176.0
   0.2289   225.95   225.95   127.38   185.75    13.33      13.33       9.39      11.70   2248.0   2248.0   2224.0  16048.0
   0.2373   174.15   174.15   105.18   160.71    10.72      10.72       8.29      10.64   2072.0   2072.0   2176.0  16192.0
   0.2455   167.87   167.87    98.62   141.96    10.54      10.54       7.58       9.61   2240.0   2240.0   2176.0  16096.0
   0.2537   145.71   145.71    88.94   116.49     9.80       9.80       7.07       8.52   2160.0   2160.0   2336.0  16352.0
   0.2617   131.47   131.47    68.60    99.32     8.65       8.65       6.13       7.44   2184.0   2184.0   2208.0  15792.0
   0.2695   100.67   100.67    62.79    85.67     6.78       6.78       5.52       6.52   2096.0   2096.0   2128.0  15952.0
   0.2773    84.52    84.52    49.72    73.59     5.97       5.97       4.59       5.85   2240.0   2240.0   2112.0  16160.0
   0.2849    70.36    70.36    44.46    60.63     5.47       5.47       4.36       5.21   2088.0   2088.0   2272.0  16112.0
   0.2926    53.89    53.89    29.53    48.11     4.75       4.75       3.14       4.48   2216.0   2216.0   2144.0  16048.0
   0.3000    47.96    47.96    26.81    38.50     4.49       4.49       3.11       3.88   2208.0   2208.0   2128.0  16064.0
   0.3075    40.81    40.81    22.18    33.96     3.97       3.97       2.64       3.50   2120.0   2120.0   2160.0  15968.0
   0.3148    37.40    37.40    20.85    29.90     3.79       3.79       2.52       3.21   2272.0   2272.0   2128.0  16208.0
   0.3221    25.76    25.76    14.50    23.51     2.80       2.80       1.83       2.65   2048.0   2048.0   2144.0  16000.0
   0.3292    23.67    23.67    13.92    20.65     2.56       2.56       1.76       2.36   2256.0   2256.0   2112.0  15936.0
   0.3363    21.48    21.48    10.19    18.65     2.40       2.40       1.27       2.14   2136.0   2136.0   1936.0  16048.0
   0.3433    17.46    17.46    10.95    15.94     1.82       1.82       1.22       1.75   2224.0   2224.0   2128.0  15856.0
   0.3503    16.07    16.07     9.90    14.28     1.47       1.47       1.03       1.46   2144.0   2144.0   1760.0  15824.0
   0.3572    13.85    13.85     9.09    13.13     1.05       1.05       0.95       1.24   2136.0   2136.0   1696.0  15472.0
   0.3639    14.43    14.43     8.11    11.93     1.07       1.07       0.82       1.05   1968.0   1968.0   1440.0  14800.0
$$

The directional plots are along the directions of the moments of the anisotropy temperature matrix.  These are ordered such that direction 1 has maximum alignment with a*, directions 2 with b*, etc.


TWINNING ANALYSIS:

Global twinning statistics.

These tests rely on the fact that it is highly improbably that very weak or very strong reflections will coincide, therefore, the tails for the distribution of twinned datasets will be less pronounced

Data truncated to  33.06 -   2.06 A resolution
$TABLE: Cumulative intensity distribution:
$GRAPHS: Cumulative intensity distribution (Acentric and centric):N:1,2,3,4,5,6:
$$ Z Acent_theor Acent_twin Acent_obser Cent_theor Cent_obser $$
$$
   0.00000  0.00000  0.00000  0.03962  0.00000  0.06943
   0.04000  0.03921  0.00303  0.06333  0.15852  0.15217
   0.08000  0.07688  0.01151  0.09436  0.22270  0.20707
   0.12000  0.11308  0.02458  0.12739  0.27097  0.25428
   0.16000  0.14786  0.04148  0.15935  0.31084  0.29387
   0.20000  0.18127  0.06155  0.19030  0.34528  0.32412
   0.24000  0.21337  0.08420  0.22083  0.37579  0.35389
   0.28000  0.24422  0.10891  0.25064  0.40330  0.38348
   0.32000  0.27385  0.13524  0.27890  0.42839  0.40895
   0.36000  0.30232  0.16279  0.30618  0.45149  0.43382
   0.40000  0.32968  0.19121  0.33297  0.47291  0.45358
   0.44000  0.35596  0.22021  0.35863  0.49288  0.47702
   0.48000  0.38122  0.24953  0.38292  0.51158  0.49770
   0.52000  0.40548  0.27895  0.40615  0.52916  0.51370
   0.56000  0.42879  0.30829  0.42772  0.54574  0.53135
   0.60000  0.45119  0.33737  0.44998  0.56142  0.54724
   0.64000  0.47271  0.36607  0.47052  0.57629  0.56409
   0.68000  0.49338  0.39428  0.49065  0.59041  0.57876
   0.72000  0.51325  0.42190  0.51053  0.60386  0.59302
   0.76000  0.53233  0.44885  0.52947  0.61667  0.60944
   0.80000  0.55067  0.47507  0.54752  0.62891  0.62120
   0.84000  0.56829  0.50052  0.56542  0.64060  0.63260
   0.88000  0.58522  0.52516  0.58253  0.65180  0.64574
   0.92000  0.60148  0.54896  0.59854  0.66253  0.65607
   0.96000  0.61711  0.57191  0.61421  0.67281  0.66535
   1.00000  0.63212  0.59399  0.62921  0.68269  0.67497
   1.04000  0.64655  0.61521  0.64258  0.69218  0.68392
   1.08000  0.66040  0.63557  0.65581  0.70130  0.69190
   1.12000  0.67372  0.65507  0.66997  0.71008  0.70215
   1.16000  0.68651  0.67373  0.68248  0.71853  0.71005
   1.20000  0.69881  0.69156  0.69425  0.72668  0.71867
   1.24000  0.71062  0.70857  0.70545  0.73453  0.72665
   1.28000  0.72196  0.72480  0.71734  0.74210  0.73402
   1.32000  0.73286  0.74025  0.72733  0.74941  0.74065
   1.36000  0.74334  0.75495  0.73789  0.75646  0.74744
   1.40000  0.75340  0.76892  0.74757  0.76328  0.75302
   1.44000  0.76307  0.78220  0.75683  0.76986  0.76110
   1.48000  0.77236  0.79480  0.76596  0.77623  0.76822
   1.52000  0.78129  0.80675  0.77489  0.78238  0.77361
   1.56000  0.78986  0.81807  0.78345  0.78833  0.77988
   1.60000  0.79810  0.82880  0.79223  0.79410  0.78771
   1.64000  0.80602  0.83895  0.80114  0.79967  0.79267
   1.68000  0.81363  0.84855  0.80909  0.80508  0.79920
   1.72000  0.82093  0.85763  0.81653  0.81031  0.80300
   1.76000  0.82796  0.86621  0.82365  0.81538  0.80754
   1.80000  0.83470  0.87431  0.83095  0.82029  0.81295
   1.84000  0.84118  0.88196  0.83800  0.82505  0.81747
   1.88000  0.84741  0.88917  0.84399  0.82967  0.82165
   1.92000  0.85339  0.89597  0.84999  0.83414  0.82672
   1.96000  0.85914  0.90238  0.85609  0.83849  0.83188
   2.00000  0.86466  0.90842  0.86194  0.84270  0.83906
$$


The culmulative intensity, N(Z), plot is diagnostic for both twinning and tNCS.  For twinned data there are fewer weak reflections, therefore, N(Z) is sigmoidal for twinned data.  However, if both twinning and tNCS are present, the effects may cancel each out. Therefore the results of the L-test and patterson test should be consulted


L test for twinning: (Padilla and Yeates Acta Cryst. D59 1124 (2003))
L statistic =  0.499  (untwinned 0.5 perfect twin 0.375)
Data has used to  33.06 -   2.06 A resolution
   Relation between L statistics and twinning fraction:
      Twinning fraction = 0.000  L statistics = 0.500:
      Twinning fraction = 0.100  L statistics = 0.440:
      Twinning fraction = 0.500  L statistics = 0.375:



$TABLE: L test for twinning:
$GRAPHS: cumulative distribution function for |L|, twin fraction of 0.03:0|1x0|1:1,2,3,4:
$$ |L|   N(L) Untwinned Twinned $$
$$
0.0000 0.0000  0.0000   0.0000
0.0500 0.0518  0.0500   0.0749
0.1000 0.1012  0.1000   0.1495
0.1500 0.1507  0.1500   0.2233
0.2000 0.2004  0.2000   0.2960
0.2500 0.2496  0.2500   0.3672
0.3000 0.2997  0.3000   0.4365
0.3500 0.3489  0.3500   0.5036
0.4000 0.3985  0.4000   0.5680
0.4500 0.4483  0.4500   0.6294
0.5000 0.4986  0.5000   0.6875
0.5500 0.5484  0.5500   0.7418
0.6000 0.5991  0.6000   0.7920
0.6500 0.6496  0.6500   0.8377
0.7000 0.7001  0.7000   0.8785
0.7500 0.7510  0.7500   0.9141
0.8000 0.8027  0.8000   0.9440
0.8500 0.8552  0.8500   0.9679
0.9000 0.9070  0.9000   0.9855
0.9500 0.9594  0.9500   0.9963
1.0000 1.0000  1.0000   1.0000
$$


The Cumulative |L| plot for acentric data, where L = (I1-I2)/(I1+I2). This depends on the local difference in intensities.  The difference operators used link to the neighbouring reflections taking into account possible tNCS operators.
Note that this estimate is not as reliable as obtained via the H-test or ML Britton test if twin laws are available.  However, it is less prone to the effects of anisotropy than the H-test

Reference: Padilla, Yeates. A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Cryst. D59, 1124-30, 2003.


Mean acentric moments I from input data:

  /^2 =  2.073 (Expected =  2.000, Perfect Twin =  1.500)
  /^3 =  6.551 (Expected value =  6.000, Perfect Twin =  3.000)
  /^4 = 27.533 (Expected value = 24.000, Perfect Twin =  7.500)

$TABLE: Acentric Moments of I:
$GRAPHS: 2nd moment of I 2.073 (Expected value = 2, Perfect Twin = 1.5):0|0.365x0|5:1,2:
: 3rd & 4th Moments of I (Expected values = 6, 24, Perfect twin = 3, 7.5):0|0.365x0|36:1,3,4:
$$ 1/resol^2              $$
$$
  0.016291      2.480     10.661     62.162
  0.033142      2.087      6.616     26.916
  0.045544      1.953      5.521     19.774
  0.056205      2.030      6.194     24.089
  0.065881      1.995      5.736     20.540
  0.074806      1.968      6.460     33.170
  0.083162      1.957      6.068     28.242
  0.091090      2.095      6.893     29.614
  0.098675      1.942      5.532     20.810
  0.105910      1.931      5.197     17.168
  0.112925      2.084      6.704     30.038
  0.119673      2.030      6.265     25.407
  0.126232      2.011      6.169     25.011
  0.132624      2.051      5.914     20.511
  0.138857      2.048      6.244     25.078
  0.144929      2.000      5.855     22.085
  0.150831      2.213      7.496     32.566
  0.156658      2.149      7.041     30.511
  0.162340      2.169      7.048     28.375
  0.167967      2.162      7.151     30.226
  0.173415      2.255      7.840     34.609
  0.178804      2.140      6.938     28.579
  0.184151      2.092      6.698     28.481
  0.189394      1.990      5.824     21.744
  0.194510      1.943      5.242     17.066
  0.199657      2.163      6.841     26.629
  0.204622      2.057      6.416     25.855
  0.209602      2.247      8.833     53.241
  0.214538      2.080      6.499     25.669
  0.219379      1.934      5.566     20.926
  0.224166      2.102      6.656     27.054
  0.228869      1.938      5.393     18.750
  0.233556      2.100      6.665     27.596
  0.238220      1.925      5.466     19.996
  0.242729      2.072      6.488     25.688
  0.247311      2.085      6.720     28.424
  0.251827      2.014      5.852     21.111
  0.256247      1.915      5.532     21.580
  0.260630      2.059      6.733     29.239
  0.265064      1.953      5.663     21.000
  0.269317      2.014      6.065     24.218
  0.273597      1.887      5.180     18.555
  0.278001      1.920      5.349     19.043
  0.282131      1.923      5.104     16.738
  0.286339      2.015      5.821     21.521
  0.290548      2.087      6.845     31.882
  0.294678      1.887      4.723     13.755
  0.298746      1.982      5.641     21.762
  0.302852      1.917      5.652     23.263
  0.306982      2.210      7.879     39.743
  0.310966      1.899      5.041     17.752
  0.314901      1.987      5.689     21.320
  0.318951      2.037      5.729     20.584
  0.322925      2.150      7.090     31.905
  0.326763      2.111      6.454     25.445
  0.330707      2.093      6.989     36.955
  0.334566      2.031      5.592     19.125
  0.338505      2.021      5.478     18.839
  0.342302      2.159      6.772     30.069
  0.346135      2.273      7.391     31.995
  0.349970      2.414      8.402     38.197
  0.353861      2.417      7.616     29.976
  0.357635      2.580      9.701     51.319
  0.361429      2.670      9.374     41.720
  0.365371      2.698      9.216     41.278
$$

$TABLE: Centric Moments of I:
$GRAPHS: 2nd moment of I 2.993 (Expected = 3, Perfect Twin = 2):0|0.357x0|5:1,2:
: 3rd & 4th Moments of I (Expected = 15, 105, Perfect Twin = 6, 24):0|0.357x0|150:1,3,4:
$$ 1/resol^2              $$
$$
  0.009323      2.650     10.088     45.774
  0.025695      2.599     11.350     66.637
  0.041921      2.834     11.797     59.307
  0.058278      3.027     14.001     82.488
  0.074401      3.104     16.142    108.685
  0.090614      3.647     27.296    302.597
  0.106857      2.744     11.386     60.688
  0.123205      2.968     13.448     76.602
  0.139401      2.904     13.342     76.787
  0.155534      3.046     15.238    105.862
  0.171755      2.968     14.016     83.909
  0.188008      3.073     14.667     83.924
  0.204468      3.016     12.935     64.429
  0.220794      2.785     12.822     74.379
  0.237255      3.084     14.771     89.863
  0.253819      3.535     21.904    174.327
  0.270653      3.948     31.491    343.753
  0.287569      2.962     13.252     72.453
  0.304540      2.613     11.061     65.099
  0.321310      3.298     17.034    117.694
  0.338380      4.167     36.275    503.339
  0.356616      3.929     21.543    156.182
$$

First principles calculation has found no potential twinning operators

The appearance of twinning operators only indicates that the crystal symmetry and lattice symmetry permit twinning.  It does not mean that there is twinning present.  Only the presence of statistics consistent with twinning gives a strong indicator.

Twin fraction estimates based on global statistics:
  Twin fraction estimate from L-test:  0.03
  Twin fraction estimate from moments: 0.00

Twin fraction estimates by twinning operator

No operators found


TWINNING SUMMARY

Twinning fraction from L-Test:   0.03

NO Twinning detected

Analysis of mean intensity by parity for reflection classes

For each class, Mn(I/sig(I)) is given for even and odd parity with respect to the condition,
eg group 1: h even & odd; group 7 h+k+l even & odd; group 8 h+k=2n & h+l=2n & k+l=2n or not

 Range    Min_S    Dmax    Nref     1           2           3           4           5           6           7           8
                                    h           k           l          h+k         h+l         k+l        h+k+l    h+k,h+l,k+l
     1   0.00196  22.61      97 38.0 36.2   33.8 41.5   35.3 39.0   34.7 39.9   35.3 38.9   38.3 35.8   36.0 38.3   34.2 38.2
     2   0.00587  13.05     108 40.9 41.1   38.2 44.6   40.1 42.1   38.8 43.6   40.2 41.9   40.6 41.3   41.1 40.9   37.7 42.2
     3   0.00978  10.11     128 37.1 40.5   35.6 42.1   36.6 41.1   37.0 40.7   38.9 38.5   38.6 38.8   38.2 39.1   37.2 39.3
     4   0.01370   8.54     133 36.4 34.7   33.6 37.7   34.7 36.3   34.8 36.2   36.9 34.2   35.6 35.4   36.0 35.0   36.3 35.2
     5   0.01761   7.54     161 35.6 33.4   33.1 36.4   34.2 34.9   32.6 36.9   32.5 36.7   34.0 35.1   32.7 36.6   30.3 36.2
     6   0.02152   6.82     167 33.8 36.4   33.7 36.8   35.7 34.7   34.7 35.7   34.1 36.3   33.4 37.0   34.8 35.6   32.0 36.3
     7   0.02544   6.27     173 36.5 35.7   34.0 38.8   35.6 36.7   33.4 38.9   35.7 36.5   35.9 36.3   36.6 35.6   32.9 37.2
     8   0.02935   5.84     195 37.1 35.6   34.0 38.9   35.9 36.9   34.6 38.4   35.5 37.2   35.4 37.3   36.6 36.2   32.9 37.6
     9   0.03326   5.48     198 36.5 36.8   34.3 39.5   37.3 35.9   34.8 38.6   37.1 36.1   37.4 35.9   35.2 38.0   36.0 36.9
    10   0.03718   5.19     201 39.0 36.6   36.9 38.9   38.4 37.3   36.9 39.0   38.2 37.5   36.8 38.9   38.0 37.7   36.3 38.4
    11   0.04109   4.93     223 41.2 38.8   39.5 40.4   39.4 40.5   38.4 41.4   40.8 39.1   39.0 40.9   40.5 39.3   38.2 40.4
    12   0.04500   4.71     226 38.5 40.1   37.3 41.4   38.4 40.1   37.2 41.7   39.0 39.5   39.7 38.8   38.8 39.8   37.5 40.0
    13   0.04892   4.52     225 38.9 39.1   37.4 40.6   39.5 38.5   39.3 38.7   38.9 39.0   40.1 37.8   37.9 40.1   40.4 38.5
    14   0.05283   4.35     247 37.5 36.3   35.2 38.8   36.2 37.6   36.1 37.8   36.9 36.8   36.4 37.3   36.3 37.4   35.7 37.3
    15   0.05674   4.20     246 36.3 37.6   35.7 38.5   36.7 37.3   35.1 38.9   36.2 37.8   36.7 37.3   37.7 36.2   34.1 38.0
    16   0.06066   4.06     252 37.5 36.8   35.6 38.7   37.5 36.9   35.1 39.6   36.1 38.3   36.7 37.7   36.9 37.5   33.5 38.5
    17   0.06457   3.94     271 36.7 36.6   35.9 37.5   35.7 37.7   35.1 38.2   37.0 36.2   37.1 36.2   35.8 37.5   36.0 36.9
    18   0.06848   3.82     270 38.2 37.3   36.9 38.6   37.2 38.3   36.8 38.7   37.9 37.5   38.1 37.3   37.4 38.1   37.4 37.8
    19   0.07240   3.72     281 35.6 38.2   35.8 38.1   36.3 37.5   36.7 37.1   37.1 36.7   36.2 37.5   36.3 37.4   36.3 37.1
    20   0.07631   3.62     275 37.3 37.0   35.2 39.4   35.8 38.5   36.7 37.6   38.0 36.3   36.8 37.5   38.2 36.0   37.2 37.1
    21   0.08022   3.53     297 35.3 35.8   35.0 36.3   34.4 36.8   35.0 36.2   35.4 35.8   37.0 34.2   34.9 36.2   36.2 35.4
    22   0.08414   3.45     295 36.4 35.6   35.7 36.2   34.7 37.3   35.8 36.1   35.1 36.9   36.5 35.4   35.6 36.3   35.5 36.1
    23   0.08805   3.37     303 35.4 34.3   33.6 36.2   34.3 35.4   34.5 35.4   34.1 35.7   35.9 34.0   34.6 35.2   34.6 35.0
    24   0.09196   3.30     296 35.1 34.0   33.7 35.5   32.9 36.4   34.1 35.1   34.5 34.6   36.0 33.0   33.5 35.7   35.5 34.2
    25   0.09588   3.23     320 32.9 33.2   33.0 33.2   32.8 33.4   32.2 34.1   32.8 33.3   32.2 34.0   33.3 32.9   31.1 33.8
    26   0.09979   3.17     326 29.8 32.5   30.8 31.7   32.4 29.9   29.6 32.7   31.1 31.2   31.1 31.3   30.2 32.3   29.5 31.8
    27   0.10370   3.11     330 32.2 32.3   31.1 33.3   32.4 32.1   32.2 32.2   33.1 31.4   32.2 32.2   32.4 32.1   33.1 31.9
    28   0.10762   3.05     327 28.3 28.5   27.3 29.6   29.1 27.7   28.0 28.9   26.6 30.3   26.9 29.9   27.4 29.5   24.9 29.7
    29   0.11153   2.99     331 28.1 29.2   27.1 30.1   28.3 29.0   28.0 29.3   29.4 27.8   29.7 27.6   28.5 28.8   29.8 28.2
    30   0.11544   2.94     343 28.2 26.2   26.6 27.8   26.1 28.1   27.1 27.1   26.8 27.4   27.6 26.7   26.8 27.4   27.3 27.1
    31   0.11936   2.89     338 26.1 26.5   25.7 27.0   26.0 26.7   26.0 26.6   25.4 27.5   25.0 27.7   26.5 26.1   23.9 27.3
    32   0.12327   2.85     359 25.6 25.9   24.4 27.3   25.5 26.0   24.9 26.8   26.0 25.5   25.6 26.0   25.2 26.3   24.9 26.1
    33   0.12718   2.80     348 25.5 23.9   24.8 24.6   25.0 24.4   24.2 25.1   23.6 25.7   25.4 24.1   24.9 24.4   23.7 25.0
    34   0.13110   2.76     360 23.5 23.2   22.9 23.9   24.1 22.6   23.0 23.6   24.1 22.5   22.5 24.4   23.7 22.9   23.0 23.5
    35   0.13501   2.72     386 23.4 24.4   23.5 24.3   22.9 25.0   23.6 24.2   25.1 22.7   24.7 23.1   23.7 24.1   25.5 23.3
    36   0.13892   2.68     359 23.4 24.3   23.9 23.8   24.0 23.7   22.7 24.9   24.1 23.7   24.1 23.7   23.3 24.4   23.2 24.1
    37   0.14284   2.65     378 21.4 23.8   21.4 23.8   21.9 23.3   22.2 23.0   21.8 23.3   22.0 23.1   23.1 22.0   20.9 23.1
    38   0.14675   2.61     393 22.4 22.7   21.0 24.2   22.0 23.2   22.7 22.4   21.4 23.6   22.9 22.2   23.7 21.4   22.0 22.8
    39   0.15066   2.58     366 22.0 21.1   21.9 21.3   22.3 20.9   21.4 21.8   21.9 21.3   21.7 21.5   21.5 21.7   21.8 21.5
    40   0.15458   2.54     396 22.0 22.5   20.7 23.9   21.6 22.9   21.2 23.3   21.8 22.7   22.7 21.8   21.2 23.3   21.3 22.6
    41   0.15849   2.51     403 21.0 20.9   20.9 21.1   20.5 21.4   21.0 20.9   20.9 21.0   20.5 21.4   21.5 20.4   20.5 21.1
    42   0.16240   2.48     391 21.5 20.0   20.6 21.0   21.5 20.0   19.6 22.2   21.7 19.9   21.0 20.5   19.6 21.9   20.6 20.8
    43   0.16632   2.45     407 19.3 19.9   18.8 20.5   20.2 19.1   20.1 19.2   19.1 20.2   19.9 19.3   20.1 19.1   19.8 19.6
    44   0.17023   2.42     403 20.1 17.4   18.1 19.8   19.2 18.4   18.0 19.7   19.4 18.4   18.1 19.7   19.4 18.4   17.8 19.2
    45   0.17414   2.40     419 18.9 17.8   17.9 18.7   18.7 17.9   17.9 18.7   18.6 18.0   18.2 18.5   18.9 17.8   18.1 18.4
    46   0.17806   2.37     429 16.8 18.3   16.8 18.4   17.2 17.9   17.4 17.7   16.7 18.5   17.3 17.8   17.1 18.0   16.3 18.0
    47   0.18197   2.34     411 16.4 16.7   16.5 16.6   16.4 16.7   16.4 16.7   15.7 17.4   16.6 16.6   16.7 16.4   15.6 16.9
    48   0.18588   2.32     418 16.8 16.1   16.2 16.7   15.6 17.2   17.3 15.6   16.5 16.4   16.3 16.5   16.5 16.4   17.3 16.2
    49   0.18980   2.30     425 16.1 15.9   15.3 16.8   15.4 16.6   15.3 16.6   16.5 15.4   15.3 16.6   16.2 15.8   15.3 16.2
    50   0.19371   2.27     436 15.1 15.2   14.5 15.7   15.4 14.8   15.0 15.2   14.8 15.4   14.9 15.3   14.6 15.6   14.4 15.3
    51   0.19762   2.25     437 15.5 15.0   14.3 16.2   15.3 15.2   15.3 15.1   15.5 14.9   15.7 14.7   14.6 15.8   16.0 14.9
    52   0.20154   2.23     437 15.0 14.7   14.7 15.1   15.5 14.2   14.2 15.5   14.7 15.0   14.8 14.9   15.2 14.5   14.0 15.2
    53   0.20545   2.21     449 14.4 13.1   13.5 13.9   13.1 14.3   13.6 13.7   14.1 13.2   13.8 13.6   14.0 13.4   14.2 13.5
    54   0.20936   2.19     456 14.7 13.3   13.5 14.7   14.1 14.0   14.0 14.1   13.5 14.6   13.9 14.2   14.4 13.7   13.3 14.3
    55   0.21328   2.17     451 13.7 13.9   13.5 14.2   14.5 13.2   13.4 14.2   13.6 14.0   13.2 14.4   13.7 13.9   12.7 14.2
    56   0.21719   2.15     463 12.8 13.1   12.8 13.0   12.2 13.7   12.0 13.9   12.6 13.3   13.5 12.4   13.0 12.9   12.2 13.2
    57   0.22110   2.13     444 12.7 13.3   12.6 13.4   12.1 13.9   13.3 12.7   13.0 13.0   12.9 13.1   12.9 13.0   13.2 12.9
    58   0.22502   2.11     460 11.6 11.6   11.6 11.6   10.5 12.9   11.5 11.7   10.7 12.3   12.2 10.9   11.7 11.5   11.3 11.7
    59   0.22893   2.09     481 11.7 11.9   11.5 12.1   11.6 12.0   12.1 11.5   11.7 11.8   12.1 11.5   11.8 11.7   12.3 11.6
    60   0.23284   2.07     473 10.4 10.5   10.3 10.6   10.9 10.0   10.4 10.5    9.9 10.9   10.7 10.2    9.7 11.2   10.1 10.5

Totals:                   19621 24.2 24.1   23.5 24.9   24.0 24.4   23.7 24.7   24.1 24.3   24.2 24.2   24.1 24.3   23.6 24.4



INTENSITY TO AMPLITUDE CONVERSION:

Norm calculation summary:

      Calculation using Wilson prior.
      Anisotropy correction applied to norm.
      Number of outliers and ice ring reflections not used in norm calculation (Read (1999) ): 350
      During the truncate procedure 0 intensities have been flagged as unphysical (too small).
      Number of outliers detected in final norm (Read (1999) ): 0




$TABLE: Phil plot:
$GRAPHS: Phil plot - normalised values:A:1,2,3,4:
: Phil plot - vs sigma:A:1,5,6,7:
$$ Value Io/Sigma I/Sigma F/Sigma**0.5 Io/sigIo I/sigI F/sigF$$
$$
  -5.00000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.92500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.85000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.77500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.70000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.62500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.55000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.47500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.40000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.32500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.25000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.17500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.10000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.02500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.95000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.87500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.80000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.72500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.65000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.57500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.50000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.42500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.35000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.27500    0.00000    0.00000    0.00000    0.50000    0.00000    0.00000
  -3.20000    0.00000    0.00000    0.00000    1.00000    0.00000    0.00000
  -3.12500    0.00000    0.00000    0.00000    0.50000    0.00000    0.00000
  -3.05000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -2.97500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -2.90000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -2.82500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -2.75000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -2.67500    0.00000    0.00000    0.00000    0.50000    0.00000    0.00000
  -2.60000    0.00000    0.00000    0.00000    0.50000    0.00000    0.00000
  -2.52500    0.00000    0.00000    0.00000    1.00000    0.00000    0.00000
  -2.45000    0.00000    0.00000    0.00000    1.50000    0.00000    0.00000
  -2.37500    0.00000    0.00000    0.00000    2.00000    0.00000    0.00000
  -2.30000    0.00000    0.00000    0.00000    1.50000    0.00000    0.00000
  -2.22500    0.00000    0.00000    0.00000    1.50000    0.00000    0.00000
  -2.15000    0.00000    0.00000    0.00000    3.50000    0.00000    0.00000
  -2.07500    0.00000    0.00000    0.00000    4.00000    0.00000    0.00000
  -2.00000    1.00000    0.00000    0.00000    3.00000    0.00000    0.00000
  -1.92500    1.00000    0.00000    0.00000    3.00000    0.00000    0.00000
  -1.85000    0.00000    0.00000    0.00000    5.50000    0.00000    0.00000
  -1.77500    0.00000    0.00000    0.00000    6.00000    0.00000    0.00000
  -1.70000    0.00000    0.00000    0.00000    5.50000    0.00000    0.00000
  -1.62500    0.00000    0.00000    0.00000    7.00000    0.00000    0.00000
  -1.55000    0.00000    0.00000    0.00000   14.50001    0.00000    0.00000
  -1.47500    1.00000    0.00000    0.00000   21.00000    0.00000    0.00000
  -1.40000    1.50000    0.00000    0.00000   18.00000    0.00000    0.00000
  -1.32500    2.50000    0.00000    0.00000   17.00000    0.00000    0.00000
  -1.25000    3.00000    0.00000    0.00000   26.00000    0.00000    0.00000
  -1.17500    4.50000    0.00000    0.00000   32.00000    0.00000    0.00000
  -1.10000    6.50000    0.00000    0.00000   36.50000    0.00000    0.00000
  -1.02500    7.50000    0.00000    0.00000   37.50000    0.00000    0.00000
  -0.95000    9.00000    0.00000    0.00000   42.50000    0.00000    0.00000
  -0.87500   10.00000    0.00000    0.00000   55.00000    0.00000    0.00000
  -0.80000   13.50000    0.00000    0.00000   65.00000    0.00000    0.00000
  -0.72500   21.00000    0.00000    0.00000   75.00000    0.00000    0.00000
  -0.65000   25.00000    0.00000    0.00000   84.00000    0.00000    0.00000
  -0.57500   35.00000    0.00000    0.00000   84.00000    0.00000    0.00000
  -0.50000   48.00000    0.00000    0.00000   82.50000    0.00000    0.00000
  -0.42500   62.00000    0.00000    0.00000   98.00000    0.00000    0.00000
  -0.35000   91.00000    0.00000    0.00000  109.00000    0.00000    0.00000
  -0.27500  124.00000    0.00000    0.00000  118.00000    0.00000    0.00000
  -0.20000  175.50000    0.00000    0.00000  140.00000    0.00000    0.00000
  -0.12500  285.50000    0.00000    0.00000  164.00000    0.00000    0.00000
  -0.05000  791.49999  295.49999    1.00000  170.00000    0.00000    0.00000
   0.02500 1876.00001 1483.00001  113.00000  166.50000    0.00000    0.00000
   0.10000 2471.50000 2506.00001  409.00001  186.50000    0.00000    0.00000
   0.17500 2343.50001 2732.49999  833.99998  208.00000    0.00000    0.00000
   0.25000 2184.50000 2712.00000 1320.00000  213.00000    0.00000    0.00000
   0.32500 2016.50003 2480.00004 1848.49991  216.50000    0.00000    0.00000
   0.40000 1845.99999 2208.49998 2371.00004  217.50000    0.00000    0.00000
   0.47500 1694.50001 1955.50002 2705.99998  222.50000    0.00000    0.00000
   0.55000 1597.49999 1777.49997 2764.49999  229.50000    0.00000    0.00000
   0.62500 1463.00000 1559.00000 2682.00000  232.50000    0.00000    0.00000
   0.70000 1337.00001 1384.50001 2584.50002  249.00000    6.00000    0.00000
   0.77500 1252.50004 1279.50004 2398.50009  244.50001   76.49996    0.00000
   0.85000 1163.49998 1162.49997 2194.99996  236.00001  189.50003    0.00000
   0.92500 1055.99998 1049.99998 2050.49998  245.50000  203.49999    0.00000
   1.00000  947.00000  953.00000 1867.50000  250.50000  156.00000    0.00000
   1.07500  887.49997  877.49995 1655.99987  262.50001  255.50014    0.00000
   1.15000  834.50002  818.50001 1488.50004  265.50000  577.49987    0.00000
   1.22500  734.99995  726.49995 1356.49996  251.99999  853.00004    0.00000
   1.30000  689.99997  661.99999 1185.50013  249.49999  909.00001    2.50000
   1.37500  686.00000  642.00000  973.00000  247.00000  828.00000   55.50000
   1.45000  618.99995  576.99996  816.49994  249.50002  714.49995  143.00005
   1.52500  569.00001  539.50000  708.00004  247.00001  637.00002  174.00000
   1.60000  529.99998  514.99999  576.99996  222.99999  565.49998  144.99999
   1.67500  499.00001  474.00003  446.00008  214.00000  487.50005  110.50001
   1.75000  461.50000  429.50000  365.50000  207.00000  427.00000   89.50000
   1.82500  421.99999  389.49998  316.49996  213.50002  386.99997   79.00000
   1.90000  359.00003  342.00002  253.00002  224.00000  329.00002   67.50001
   1.97500  307.50000  310.00000  190.49998  216.50000  281.99999   89.50002
   2.05000  313.50000  300.00001  149.00002  214.99999  290.99998  241.49985
   2.12500  306.00000  277.00000  114.00000  207.50000  283.00000  449.00000
   2.20000  284.99999  269.00001   76.99998  193.00000  250.99999  564.50003
   2.27500  269.49999  248.99994   58.49999  194.50001  228.49996  606.50004
   2.35000  243.50005  226.49999   50.50001  206.99998  228.49996  584.00009
   2.42500  232.49999  224.50001   46.50000  199.50002  224.50003  531.00002
   2.50000  218.00000  196.50000   37.00000  172.00000  197.50000  478.50000
   2.57500  185.99999  176.50000   23.99999  171.00001  186.49999  415.49997
   2.65000  176.49999  165.99996   16.99999  177.99999  169.99997  389.50000
   2.72500  156.50004  143.50002   12.50000  163.50003  164.99998  361.00007
   2.80000  136.00000  128.50001    9.50000  167.99998  172.00000  325.00001
   2.87500  128.00000  118.00000    8.50000  181.50000  174.50000  299.00000
   2.95000  114.49999  112.00000    5.50000  178.00000  165.99999  275.99999
   3.02500  108.50001  109.00000    1.50000  160.99996  161.50001  243.49993
   3.10000  109.50000  108.50000    1.50000  159.49997  166.00000  218.99999
   3.17500  106.00000  101.00001    1.00000  166.00001  157.00001  215.50001
   3.25000   90.50000   87.50000    1.00000  164.50000  153.00000  201.50000
   3.32500   85.50001   82.00000    1.50000  159.99999  152.49999  176.99998
   3.40000   92.50000   79.99999    0.50000  148.50000  136.99997  154.99999
   3.47500   84.00002   76.50000    0.00000  143.00001  127.99999  149.50000
   3.55000   76.00000   74.00000    0.50000  145.49999  128.00000  143.00001
   3.62500   70.00000   65.50000    1.00000  150.50000  131.00000  154.00000
   3.70000   54.49999   53.99999    1.50000  139.49999  127.49999  156.99998
   3.77500   54.50003   53.50001    1.50000  131.50000  133.50004  141.99999
   3.85000   63.00001   59.99999    1.00000  140.49998  136.50003  140.00000
   3.92500   57.00001   57.00001    0.50000  144.00001  126.00000  135.00001
   4.00000   40.50000   40.50000    0.00000  129.50000  123.00000  113.00000
   4.07500   33.49997   33.99998    0.50000  122.99998  116.00002   96.50000
   4.15000   42.00001   40.00001    0.50000  127.00000  112.50000  110.50003
   4.22500   44.50000   37.00001    0.00000  113.50003  113.50000  127.99999
   4.30000   37.99997   31.50000    0.00000  111.00006  110.49998  118.99993
   4.37500   31.00000   30.50000    0.00000  127.00000  108.50000  104.50000
   4.45000   28.50001   30.00000    0.00000  131.50000  117.99996   96.50003
   4.52500   28.00000   23.99998    0.00000  123.99998  120.49999   88.50000
   4.60000   25.50001   21.99999    0.00000  111.00002  115.50000   90.99999
   4.67500   23.50001   23.49999    0.00000  115.00005  113.99999   90.49998
   4.75000   23.50000   19.50000    0.00000  111.50000  112.50000   87.50000
   4.82500   23.49999   18.99999    0.00000  107.99995  116.99997   86.00002
   4.90000   20.99999   16.99999    0.00000  125.00002  121.50000   74.49998
   4.97500   14.00001   14.00000    0.00000  126.00002  111.00003   75.99997
   5.05000   12.00001   12.49999    0.00000  130.50005  107.50003   81.99998
   5.12500   12.50000   11.50000    0.00000  122.00000  109.00000   84.50000
   5.20000   11.00001   10.50001    0.00000  100.50001  105.49999   84.50003
   5.27500   11.50000   10.00000    0.00000  105.50002   95.49997   78.50000
   5.35000   11.00001   13.49999    0.00000  107.50001   92.49998   81.49999
   5.42500   13.50002   14.49999    0.00000  100.49999  107.00003   81.49999
   5.50000   14.00000   12.50000    0.00000  107.00000  112.00000   76.00000
   5.57500   10.99999   11.00001    0.00000  116.49999  106.50002   76.49998
   5.65000   13.50000   10.00000    0.00000  108.99998   97.49999   75.99999
   5.72500   13.00001   10.00000    0.00000   96.50001   91.50000   81.99997
   5.80000   10.50000    9.50000    0.00000   96.00002   81.99996   80.99994
   5.87500    8.00000    9.00000    0.00000  100.00000   85.00000   74.50000
   5.95000    8.49999    9.50000    0.00000   92.00005  106.49995   76.00002
   6.02500   11.00000    9.50000    0.00000   98.00004  101.99996   67.49999
   6.10000    9.00001    6.50001    0.00000  100.00003   89.49999   67.99998
   6.17500    8.00001    9.00003    0.00000   89.00001   89.49999   69.99998
   6.25000    8.00000   10.50000    0.00000   90.50000   87.50000   70.00000
   6.32500    6.50000    5.50001    0.00000   97.49996   96.49996   65.00005
   6.40000    7.00000    6.00001    0.00000   98.49998   90.49996   63.50002
   6.47500    5.00001    5.00001    0.00000   90.50000   74.00001   64.00002
   6.55000    4.00001    4.50001    0.00000   83.49997   75.50002   56.50000
   6.62500    5.50000    4.00000    0.00000   74.00000   77.50000   62.50000
   6.70000    4.50000    3.49999    0.00000   73.49998   83.49996   60.00005
   6.77500    6.00001    4.50000    0.00000   88.50003   76.99996   57.50002
   6.85000    6.00001    4.00000    0.00000   84.50004   69.49998   64.50000
   6.92500    2.99999    5.00000    0.00000   72.50002   73.49999   67.00001
   7.00000    3.00000    4.50000    0.00000   75.50000   75.50000   57.00000
   7.07500    4.99999    2.50001    0.00000   75.50000   92.49994   51.99996
   7.15000    4.50000    2.00000    0.00000   86.00003   91.99997   63.50001
   7.22500    2.00000    2.50000    0.00000   89.50002   85.99998   69.50000
   7.30000    2.00001    2.50000    0.00000   84.50001   85.49996   67.99998
   7.37500    2.00000    2.00000    0.00000   89.00000   83.00000   61.00000
   7.45000    1.00000    1.00000    0.00000   89.50001   79.00005   58.49999
   7.52500    1.50000    2.00000    0.00000   89.50001   76.50002   59.00000
   7.60000    2.50000    2.50000    0.00000   90.00001   81.50000   59.00000
   7.67500    2.50000    2.50000    0.00000   78.49995   83.50002   63.50002
   7.75000    2.50000    2.50000    0.00000   71.50000   83.00000   59.00000
   7.82500    2.00001    1.50000    0.00000   79.99997   74.00003   54.99998
   7.90000    1.00000    1.00000    0.00000   75.99997   73.50001   54.49999
   7.97500    2.00000    2.50000    0.00000   67.99999   78.00000   51.50000
   8.05000    2.50000    2.49999    0.00000   80.00005   80.00001   49.99998
   8.12500    1.00000    1.00000    0.00000   86.50000   78.50000   55.00000
   8.20000    0.99999    0.50000    0.00000   70.00007   68.50003   55.50004
   8.27500    2.00000    0.49999    0.00000   72.99984   71.49990   49.49998
   8.35000    0.99999    1.00000    0.00000   85.49996   74.99994   50.49999
   8.42500    0.50000    2.00001    0.00000   71.99995   64.49998   54.00002
   8.50000    2.00000    2.50000    0.00000   67.50000   60.00000   56.50000
   8.57500    2.00001    1.50000    0.00000   64.50004   66.49997   53.00001
   8.65000    1.00000    1.00000    0.00000   70.99985   74.99998   56.49994
   8.72500    0.49999    0.49999    0.00000   75.99990   78.50002   59.49997
   8.80000    0.00000    0.00000    0.00000   76.00005   80.50000   57.00000
   8.87500    0.00000    0.00000    0.00000   86.00000   83.00000   56.50000
   8.95000    0.50000    0.50000    0.00000   78.50004   77.00004   51.00003
   9.02500    0.50001    0.50001    0.00000   73.99997   61.00008   56.99989
   9.10000    0.50001    0.50001    0.00000   70.99994   59.00006   65.49997
   9.17500    1.00000    0.50000    0.00000   66.50001   67.50001   54.99996
   9.25000    0.50000    0.00000    0.00000   65.00000   70.50000   45.00000
   9.32500    0.00000    0.00000    0.00000   66.99997   71.99999   51.49996
   9.40000    0.00000    0.00000    0.00000   75.99996   70.00003   59.50001
   9.47500    0.50001    0.00000    0.00000   77.99998   68.00001   60.50002
   9.55000    1.00000    0.50000    0.00000   65.99995   60.49996   60.49999
   9.62500    0.50000    0.50000    0.00000   56.50000   53.00000   60.50000
   9.70000    0.00000    0.00000    0.00000   54.50001   58.99997   52.50005
   9.77500    0.00000    0.00000    0.00000   56.99995   66.99997   49.99993
   9.85000    1.50002    1.00001    0.00000   70.50009   68.49998   57.50001
   9.92500    1.49999    0.99999    0.00000   71.99996   62.99998   53.99998
$$



ctruncate: Normal termination
Times: User:       4.5s System:    0.1s Elapsed:     0:05  
# command line: # ctruncate '-hklin' 'AUTOMATIC_DEFAULT_scaled.mtz' '-hklout' 'NATIVE_truncated.mtz' '-colin' '/*/*/[IMEAN,SIGIMEAN]' '-xmlout' '42_truncate.xml'