###############################################################
 ###############################################################
 ###############################################################
 ### CCP4 7.0.045: ctruncate        version 1.17.27 : 14/08/17##
 ###############################################################
 User: jfraser  Run date:  8/11/2017 Run time: 15:02:47 


 Please reference: Collaborative Computational Project, Number 4. 2011.
 "Overview of the CCP4 suite and current developments". Acta Cryst. D67, 235-242.
 as well as any specific reference in the program write-up.




USER SUPPLIED INPUT:

hklin 	/Users/jfraser/METHODS_XIA2/adp/DEFAULT/scale/AUTOMATIC_DEFAULT_scaled.mtz
hklout 	/Users/jfraser/METHODS_XIA2/adp/DEFAULT/scale/NATIVE_truncated.mtz
colin 	/*/*/[IMEAN,SIGIMEAN]
xmlout 	/Users/jfraser/METHODS_XIA2/adp/DEFAULT/scale/44_truncate.xml

** JQ

Reflection File INFO:

Reflection file name: /Users/jfraser/METHODS_XIA2/adp/DEFAULT/scale/AUTOMATIC_DEFAULT_scaled.mtz
Crystal/dataset names: /DEFAULT/NATIVE
Spacegroup: P 43 2 2 (number   95)
Cell parameters:    74.2900    74.2900   110.3700    90.0000    90.0000    90.0000

Reflection Data INFO:

Reflection data type: I_sigI
Number of observations (including Freidal mates): 49124
Number of unique reflections (excluding Freidal): 49124 (Acentric: 43419, Centric: 5705)
Resolution range of data: 37.145 - 1.510 A
Maximum index h (a*): 49 (1.516 A)   - by symm. -  49 (1.516 A)
Maximum index k (b*): 34 (2.185 A)   - by symm. -  49 (1.516 A)
Maximum index l (c*): 73 (1.512 A)   - by symm. -  73 (1.512 A)



Estimated Optical Resolution: 1.516




COMPLETENESS ANALYSIS (using intensities):

The following uses I/sigI Completeness levels, in particular targeting completeness above 85%.  The Completeness with I/sigma above 3 indicates a strong signal (A better estimate is available using CC1/2 in aimless).

   I/sigI>N            range(A)      %refln
    15.0            37.15 -  2.44     25.5  
    10.0            37.15 -  2.31     29.6  
     5.0            37.15 -  2.09     38.8  
     3.0            37.15 -  1.95     48.0  ***
     2.0            37.15 -  1.87     53.1  
     1.5            37.15 -  1.87     54.1  
     1.0            37.15 -  1.83     57.1  
     N/A            37.15 -  1.51

The resolution range with I/sigI > 3 with completeness above 0.85, the estimated strong data resolution range of this data, is  37.15A to   1.95A.
  This corresponds to approximately  47% of the reflections in the file.


$TABLE: Intensity Completeness analysis:
$GRAPHS: Completeness & (I/sigI)>N v resolution:N:1,2,3,4,5,6,7,8:
: Completeness & Rstandard v resolution:N:1,2,9:
$$ 1/resol^2 Completeness (I/s>15) (I/s>10) (I/s>5) (I/s>3) (I/s>2) (I/s>1) Rstandard$$
$$
    0.0108   0.992        0.988    0.992    0.992   0.992   0.992   0.992    0.000
    0.0240   1.000        0.990    0.999    1.000   1.000   1.000   1.000    0.000
    0.0346   1.000        0.989    0.998    0.998   0.998   0.998   0.998    0.000
    0.0439   1.000        0.989    0.995    0.998   0.998   1.000   1.000    0.000
    0.0524   1.000        0.996    0.998    0.999   1.000   1.000   1.000    0.000
    0.0604   1.000        0.992    0.997    0.999   1.000   1.000   1.000    0.000
    0.0679   1.000        0.990    0.996    0.996   0.999   0.999   0.999    0.000
    0.0750   0.998        0.974    0.995    0.996   0.997   0.997   0.997    0.000
    0.0818   1.000        0.982    0.991    0.993   0.998   0.999   0.999    0.000
    0.0884   1.000        0.982    0.995    0.999   0.999   1.000   1.000    0.000
    0.0947   1.000        0.978    0.987    0.997   0.997   0.997   0.999    0.000
    0.1009   1.000        0.970    0.985    0.995   0.996   0.997   0.998    0.000
    0.1069   1.000        0.972    0.987    0.993   0.997   0.997   0.997    0.000
    0.1128   1.000        0.970    0.983    0.991   0.996   0.998   0.999    0.000
    0.1185   1.000        0.969    0.991    0.998   0.998   0.998   0.999    0.000
    0.1241   1.000        0.949    0.975    0.988   0.996   0.997   0.997    0.000
    0.1295   1.000        0.951    0.985    0.994   0.994   0.996   0.996    0.000
    0.1349   1.000        0.938    0.969    0.983   0.990   0.992   0.996    0.000
    0.1401   1.000        0.923    0.967    0.984   0.989   0.995   0.995    0.000
    0.1453   1.000        0.935    0.963    0.980   0.987   0.987   0.989    0.000
    0.1504   1.000        0.910    0.972    0.979   0.984   0.987   0.992    0.000
    0.1554   1.000        0.896    0.944    0.962   0.971   0.983   0.985    0.000
    0.1604   1.000        0.921    0.968    0.981   0.987   0.993   0.993    0.000
    0.1653   1.000        0.920    0.959    0.981   0.988   0.991   0.997    0.000
    0.1700   1.000        0.882    0.932    0.961   0.967   0.970   0.975    0.000
    0.1748   1.000        0.880    0.933    0.961   0.975   0.981   0.984    0.000
    0.1794   1.000        0.859    0.933    0.953   0.974   0.976   0.982    0.000
    0.1841   1.000        0.871    0.923    0.955   0.968   0.978   0.979    0.000
    0.1886   0.998        0.836    0.896    0.928   0.941   0.949   0.961    0.000
    0.1932   1.000        0.805    0.890    0.939   0.962   0.970   0.970    0.000
    0.1977   0.999        0.799    0.923    0.954   0.970   0.979   0.985    0.000
    0.2021   0.998        0.796    0.887    0.928   0.944   0.950   0.954    0.000
    0.2065   1.000        0.752    0.851    0.899   0.931   0.948   0.962    0.001
    0.2108   1.000        0.814    0.902    0.940   0.956   0.966   0.977    0.001
    0.2150   1.000        0.773    0.878    0.922   0.944   0.963   0.971    0.001
    0.2193   1.000        0.765    0.858    0.928   0.959   0.967   0.974    0.001
    0.2236   1.000        0.789    0.884    0.928   0.941   0.950   0.958    0.001
    0.2276   0.998        0.710    0.857    0.910   0.923   0.940   0.947    0.001
    0.2318   0.996        0.696    0.825    0.880   0.915   0.926   0.941    0.001
    0.2360   1.000        0.686    0.822    0.917   0.943   0.955   0.966    0.001
    0.2400   1.000        0.662    0.808    0.876   0.903   0.918   0.934    0.001
    0.2441   1.000        0.662    0.804    0.889   0.916   0.923   0.949    0.001
    0.2481   1.000        0.633    0.798    0.866   0.914   0.933   0.950    0.001
    0.2520   1.000        0.587    0.775    0.848   0.884   0.898   0.923    0.002
    0.2560   1.000        0.598    0.778    0.848   0.888   0.912   0.933    0.002
    0.2600   0.996        0.538    0.697    0.791   0.850   0.877   0.899    0.002
    0.2638   1.000        0.546    0.753    0.853   0.897   0.922   0.945    0.002
    0.2677   0.992        0.477    0.664    0.762   0.815   0.850   0.890    0.002
    0.2715   0.990        0.516    0.755    0.834   0.903   0.921   0.933    0.002
    0.2754   0.997        0.478    0.700    0.807   0.862   0.881   0.906    0.003
    0.2791   0.992        0.413    0.629    0.733   0.778   0.794   0.824    0.003
    0.2829   1.000        0.437    0.713    0.827   0.894   0.919   0.940    0.003
    0.2867   1.000        0.359    0.599    0.721   0.788   0.820   0.843    0.004
    0.2903   1.000        0.347    0.578    0.721   0.793   0.829   0.874    0.004
    0.2941   1.000        0.336    0.550    0.670   0.750   0.802   0.851    0.005
    0.2977   1.000        0.311    0.557    0.678   0.765   0.813   0.852    0.006
    0.3013   1.000        0.289    0.550    0.685   0.761   0.803   0.845    0.006
    0.3050   1.000        0.258    0.489    0.639   0.734   0.783   0.848    0.008
    0.3086   0.998        0.275    0.495    0.662   0.766   0.804   0.843    0.007
    0.3121   1.000        0.227    0.446    0.584   0.690   0.733   0.782    0.009
    0.3158   1.000        0.178    0.424    0.580   0.673   0.731   0.784    0.011
    0.3193   1.000        0.163    0.422    0.598   0.670   0.727   0.792    0.011
    0.3228   1.000        0.151    0.401    0.565   0.691   0.738   0.805    0.011
    0.3264   0.999        0.158    0.360    0.518   0.634   0.703   0.769    0.013
    0.3298   1.000        0.116    0.340    0.514   0.646   0.723   0.777    0.014
    0.3334   0.998        0.123    0.331    0.513   0.622   0.686   0.761    0.014
    0.3368   1.000        0.092    0.326    0.507   0.626   0.705   0.785    0.015
    0.3402   1.000        0.100    0.309    0.496   0.653   0.705   0.771    0.016
    0.3436   1.000        0.087    0.283    0.446   0.526   0.602   0.686    0.018
    0.3471   1.000        0.066    0.254    0.432   0.538   0.608   0.700    0.020
    0.3505   1.000        0.080    0.234    0.394   0.548   0.625   0.729    0.021
    0.3538   0.998        0.061    0.244    0.389   0.532   0.628   0.716    0.023
    0.3572   1.000        0.041    0.199    0.366   0.508   0.611   0.705    0.025
    0.3606   1.000        0.052    0.192    0.347   0.456   0.542   0.639    0.028
    0.3639   0.996        0.048    0.211    0.373   0.497   0.555   0.654    0.024
    0.3673   0.996        0.056    0.210    0.371   0.520   0.603   0.680    0.023
    0.3705   1.000        0.036    0.174    0.351   0.451   0.549   0.657    0.028
    0.3738   1.000        0.038    0.164    0.308   0.439   0.528   0.635    0.035
    0.3770   1.000        0.043    0.169    0.317   0.425   0.518   0.611    0.034
    0.3804   1.000        0.028    0.164    0.288   0.417   0.501   0.638    0.035
    0.3836   0.998        0.028    0.128    0.247   0.415   0.486   0.607    0.035
    0.3868   1.000        0.027    0.111    0.254   0.369   0.463   0.555    0.038
    0.3901   1.000        0.023    0.167    0.360   0.568   0.684   0.801    0.028
    0.3933   1.000        0.008    0.077    0.217   0.317   0.397   0.514    0.054
    0.3965   1.000        0.019    0.118    0.236   0.336   0.423   0.534    0.048
    0.3997   1.000        0.028    0.113    0.237   0.378   0.474   0.592    0.049
    0.4028   1.000        0.006    0.081    0.229   0.358   0.441   0.574    0.052
    0.4060   1.000        0.006    0.074    0.169   0.293   0.388   0.520    0.056
    0.4091   1.000        0.006    0.086    0.223   0.329   0.405   0.519    0.055
    0.4123   1.000        0.006    0.076    0.164   0.278   0.371   0.503    0.061
    0.4154   1.000        0.004    0.081    0.182   0.347   0.492   0.624    0.048
    0.4186   0.998        0.004    0.058    0.171   0.275   0.351   0.442    0.058
    0.4216   1.000        0.002    0.059    0.156   0.255   0.334   0.445    0.070
    0.4247   0.998        0.002    0.032    0.125   0.239   0.311   0.436    0.074
    0.4278   0.994        0.000    0.040    0.095   0.158   0.209   0.273    0.132
    0.4309   0.993        0.000    0.037    0.207   0.396   0.513   0.654    0.047
    0.4340   0.998        0.000    0.035    0.159   0.324   0.437   0.572    0.059
    0.4371   0.970        0.000    0.023    0.068   0.131   0.204   0.298    0.136
$$

The completeness at various resolution limit plots gives the completeness after applying a I/sigI cutoff.  The profiles give an indication of the quality of the data.  The Rstandard plot (/) gives an alternative indicator.  Strongly recorded resolution bins would typically have values below 0.1.

Low Resolution Intensity Completeness analysis:
   1/resol^2    Range         Completeness 
    0.0033   0.000-0.005   0.950 [60.6:63.8]
    0.0074   0.005-0.009   1.000 [76.0:76.0]
    0.0108   0.009-0.012   1.000 [78.9:78.9]
    0.0139   0.012-0.015   1.000 [81.5:81.5]
    0.0166   0.015-0.018   1.000 [83.2:83.2]
    0.0193   0.018-0.021   1.000 [82.8:82.8]
    0.0217   0.021-0.023   1.000 [83.9:83.9]
    0.0240   0.023-0.025   1.000 [86.2:86.2]
    0.0263   0.025-0.027   1.000 [82.8:82.8]
    0.0284   0.027-0.030   0.999 [89.6:89.8]


Low completeness at low resolution can lead to map distortions and other difficulties.  This often arises through experimental effects such as incorrectly alligned crystal, poorly positioned backstop, or over exposure.


ICE RING SUMMARY:

 reso  ice_ring  mean_I mean_Sigma Estimated_I   Ratio Zscore Completeness Ave_Completeness
 3.90   yes    22170.59     357.60    24154.30    0.92  -5.55        1.00     1.00
 3.67   no     21706.66     349.26    20737.68    1.05   2.77        1.00     1.00
 3.44   no     16993.96     281.52    16040.86    1.06   3.39        1.00     1.00
 2.67   no      3655.23      76.62     3638.31    1.00   0.22        1.00     1.00
 2.25   no      1823.54      54.93     1693.16    1.08   2.37        1.00     1.00
 2.08   no       985.50      39.29      991.04    0.99  -0.14        1.00     1.00
 1.95   no       493.20      31.34      486.65    1.01   0.21        1.00     1.00
 1.92   no       447.10      32.90      433.42    1.03   0.42        0.99     1.00
 1.89   no       344.57      28.52      349.53    0.99  -0.17        0.99     1.00
 1.73   no       107.15      23.35      109.30    0.98  -0.09        1.00     1.00

The ice rings table shows data Z-scores and completeness for ice ring sensitive resolutions in comparison with neighbouring ice-ring insensitive resolutions. Large z-scores and low completeness at give a strong hint to the presence of ice rings. It may be required to exclude these resolution ranges. 



WILSON SCALING:

Estimated number of residues = 220

Results Wilson B-factor:

Estimate of Wilson B factor: 26.606 A^(-2), with sigma  1.895
Estimate of scale factor on intensity =    12.9284 (intercept -2.559, sigma  0.188)


The isotropic Wilson temperature estimate (B-value) is an approximation to the fall-off of scattering with resolution.  This should be correlated with the refined atomic B-values.  This averages out any anisotropy in the experimental observations.  This approximation will be misleading for strongly anisotropic data.

$TABLE: Wilson plot:
$GRAPHS: Wilson plot - estimated B factor =  26.6 :A:1,2,3:
$$ 1/resol^2 ln(I/I_th) Reference_prot $$
$$
   0.01511   -3.10388   -2.89676 
   0.03416   -3.35505   -3.22767 
   0.04900   -2.72871   -2.74766 
   0.06205   -2.97307   -2.85626 
   0.07392   -3.08293   -3.04209 
   0.08499   -3.27614   -3.25463 
   0.09546   -3.52568   -3.52650 
   0.10542   -3.83569   -3.77330 
   0.11490   -3.96167   -3.98901 
   0.12407   -4.23456   -4.19047 
   0.13305   -4.46203   -4.36013 
   0.14162   -4.54106   -4.48172 
   0.14997   -4.56037   -4.59387 
   0.15811   -4.61253   -4.70805 
   0.16605   -4.75395   -4.79279 
   0.17387   -4.85787   -4.87102 
   0.18144   -5.00095   -4.93967 
   0.18896   -4.95484   -5.00941 
   0.19631   -5.03552   -5.07323 
   0.20350   -5.13516   -5.15430 
   0.21065   -5.22382   -5.24189 
   0.21759   -5.33981   -5.33850 
   0.22447   -5.36415   -5.40859 
   0.23123   -5.49201   -5.50461 
   0.23796   -5.59938   -5.62366 
   0.24457   -5.74044   -5.72679 
   0.25106   -5.86223   -5.84252 
   0.25751   -6.00656   -5.96494 
   0.26391   -6.08503   -6.08781 
   0.27020   -6.20816   -6.21914 
   0.27654   -6.29706   -6.34137 
   0.28267   -6.42435   -6.44895 
   0.28878   -6.61079   -6.57041 
   0.29477   -6.71793   -6.68763 
   0.30080   -6.79946   -6.79442 
   0.30673   -6.90852   -6.90422 
   0.31250   -7.04617   -6.99699 
   0.31842   -7.18699   -7.09107 
   0.32411   -7.26764   -7.18074 
   0.32976   -7.31509   -7.25544 
   0.33559   -7.40450   -7.33367 
   0.34110   -7.45957   -7.41846 
   0.34672   -7.62834   -7.50184 
   0.35225   -7.66783   -7.59033 
   0.35775   -7.81537   -7.66121 
   0.36322   -7.77420   -7.72047 
   0.36868   -7.77923   -7.78791 
   0.37395   -7.89349   -7.85455 
   0.37937   -7.94636   -7.92422 
   0.38465   -8.15701   -7.99750 
   0.38989   -7.83863   -8.06675 
   0.39514   -8.28177   -8.13361 
   0.40040   -8.04881   -8.20851 
   0.40553   -8.25255   -8.26929 
   0.41060   -8.27983   -8.32967 
   0.41582   -8.14088   -8.39829 
   0.42087   -8.39529   -8.47263 
   0.42585   -8.83541   -8.54363 
   0.43095   -8.07144   -8.60453 
   0.43601   -8.90456   -8.66594 
$$

Computed using Popov & Bourenkov, Acta D (2003) D59, 1145

The wilson plot shows the fall off of the mean intensity with resolution.   This is then used calculate an absolute scale and temperature factor for a set of observed intensities, using the theory of A C Wilson.  The reference_plot is based upon an analysis of high resolution datasets in the PDB (BEST), which takes into account the none random distribution of atoms within the crystal.  Some deviation from the reference plot is to be expected, however, significant deviation may indicate problems, such as ice rings, detector issues, or missprocessed.


OUTLIER RING SUMMARY:

Outliers total  11.0% of the bins.

 reso    mean_I mean_Sigma Estimated_I  Ratio Zscore Completeness Ave_Completeness
 7.52  23524.06     362.24    27784.98   0.85 -11.76     1.00     1.00
 6.63  16716.66     278.23    20769.61   0.80 -14.57     1.00     0.99
 5.30  18353.10     306.89    23291.73   0.79 -16.09     1.00     1.00
 5.04  24149.62     402.78    27335.41   0.88  -7.91     1.00     1.00
 4.33  36143.82     593.61    31912.15   1.13   7.13     1.00     1.00
 4.21  27751.54     442.50    30756.33   0.90  -6.79     1.00     1.00
 3.90  22830.57     376.52    25514.62   0.89  -7.13     1.00     1.00
 3.82  19960.61     319.85    24942.22   0.80 -15.57     1.00     1.00
 3.24  10081.33     187.25    12008.49   0.84 -10.29     1.00     1.00
 3.16   8322.82     155.40    10759.73   0.77 -15.68     1.00     1.00
 3.02   5656.07     113.36     8054.18   0.70 -21.15     1.00     1.00
 2.99   5901.51     114.92     7643.08   0.77 -15.15     1.00     1.00
 2.93   8410.82     154.02     6785.53   1.24  10.55     1.00     1.00
 2.82   4089.20      82.90     5303.22   0.77 -14.65     1.00     1.00
 2.80   4063.78      81.40     5057.23   0.80 -12.20     1.00     1.00
 2.77   4131.50      79.40     4789.78   0.86  -8.29     1.00     1.00
 2.75   3626.64      76.18     4566.95   0.79 -12.34     1.00     1.00
 2.71   3672.41      73.28     4169.96   0.88  -6.79     1.00     1.00
 2.69   3132.51      66.76     4069.83   0.77 -14.04     1.00     1.00
 2.65   3286.98      69.16     3738.22   0.88  -6.52     1.00     1.00
 2.51   3298.21      68.17     2807.71   1.17   7.20     1.00     1.00
 2.49   3190.93      65.81     2713.66   1.18   7.25     1.00     1.00
 2.38   2779.27      60.17     2213.58   1.26   9.40     1.00     1.00
 2.33   1656.01      44.18     1985.91   0.83  -7.47     1.00     1.00
 2.31   2313.75      55.04     1922.34   1.20   7.11     1.00     1.00
 2.25   2088.99      62.90     1660.49   1.26   6.81     1.00     1.00
 2.18   1648.56      48.51     1337.21   1.23   6.42     1.00     1.00

 The outlier rings table shows data Z-scores and completeness for problem resolution bins in comparison with the Wilson B-factor fit. Large z-scores and low completeness at give a strong hint to the presence of problems. It may be required to exclude these resolution ranges.




TRANSLATIONAL NCS:

No translational NCS detected (with resolution limited to  4.00 A)

The analysis uses the peak heights in the patterson map that are further than 14 A (approx. 4 Ca-Ca) from the origin.  The presence of a large off origin peak (above 20%) and/or a very low Q-score, below 1.0, is a string indicator of the presence of tNCS.  An intermidiate Q-score, between 5.0 and 1.0, may indicate weak tNCS or be the result of cross vector of a large scatterer such as a cluster or heavy metal.

Reference: P. Zwarts CCP4 Newsletter 42




ANISOTROPY ANALYSIS:

Analysis using data from  37.15A to   1.95A.

Eigenvalues:  23.9432  23.9432  29.8562
Eigenvalue ratios:   0.8609   0.8609   1.0000

Some anisotropy detetect.  This may have an effect on statistics.
The presence of anisotropy may indicate that the crystal is poorly ordered along one of the axes.

Anisotropic B scaling (orthogonal coords):

|  23.943228   0.000000   0.000000 |
|   0.000000  23.943228   0.000000 |
|   0.000000   0.000000  29.856216 |

Anisotropic U (orthogonal coords):

|   0.606489   0.000000   0.000000 |
|   0.000000   0.606489   0.000000 |
|   0.000000   0.000000   0.756267 |

Eigenvector breakdown:

Eigenvalue  Eigenvector(a*,b*,c*)
  0.606489 (   1.000000   0.000000   0.000000 )
  0.606489 (   0.000000   1.000000   0.000000 )
  0.756267 (   0.000000   0.000000   1.000000 )

Anisotropic correction (orthogonal coords):

|  -0.024907   0.000000   0.000000 |
|   0.000000  -0.024907   0.000000 |
|   0.000000   0.000000   0.049813 |

$TABLE: Intensity statistics:
$GRAPHS: Mn(I) v resolution:N:1,2,3,4,5:
: Mn(I/sd) v resolution:N:1,6,7,8,9:
: No. reflections v resolution:N:1,10,11,12,13:
$$ 1/resol^2 Mn(I(1)) Mn(I(2)) Mn(I(3)) Mn(I) Mn(I/s(1)) Mn(I/s(2)) Mn(I/s(3)) Mn(I/s)     N(1)     N(2)     N(3)     N$$
$$
   0.0179 26840.39 26840.39 17683.88 24501.47    54.88      54.88      47.74      53.50   2240.0   2240.0   2464.0  16032.0
   0.0394 27325.69 27325.69 20801.35 24167.59    52.77      52.77      48.54      52.67   2184.0   2184.0   2432.0  16032.0
   0.0565 36446.34 36446.34 22713.31 30999.21    56.18      56.18      52.26      56.68   2128.0   2128.0   2272.0  16016.0
   0.0715 21747.52 21747.52 16300.16 21670.02    55.19      55.19      49.51      54.34   2200.0   2200.0   2432.0  16128.0
   0.0852 15784.97 15784.97 10608.50 16070.28    52.52      52.52      48.78      52.34   2120.0   2120.0   2336.0  16016.0
   0.0979 12087.94 12087.94  7278.30 11188.79    49.20      49.20      42.44      46.87   2128.0   2128.0   2352.0  16064.0
   0.1099  8876.18  8876.18  6197.12  7829.18    45.99      45.99      41.20      44.33   2232.0   2232.0   2320.0  16096.0
   0.1213  6366.05  6366.05  4877.96  6083.89    44.64      44.64      39.55      43.93   2160.0   2160.0   2304.0  16016.0
   0.1322  4522.34  4522.34  3171.63  4045.14    42.88      42.88      35.49      40.64   2168.0   2168.0   2304.0  16048.0
   0.1428  4280.29  4280.29  2305.57  3588.13    41.61      41.61      31.74      38.08   2096.0   2096.0   2288.0  16048.0
   0.1529  4117.15  4117.15  2094.98  3292.34    42.25      42.25      31.77      38.10   2112.0   2112.0   2320.0  16016.0
   0.1629  3690.51  3690.51  1705.87  2872.44    40.15      40.15      30.52      36.75   2200.0   2200.0   2304.0  16272.0
   0.1725  3385.52  3385.52  1301.28  2318.27    38.81      38.81      25.28      33.46   2184.0   2184.0   2288.0  15872.0
   0.1818  2524.22  2524.22   967.75  1958.88    35.60      35.60      22.04      31.39   2096.0   2096.0   2256.0  16032.0
   0.1909  2274.55  2274.55   896.26  1875.92    32.20      32.20      19.39      28.45   2136.0   2136.0   2272.0  16080.0
   0.1999  2318.79  2318.79   866.46  1748.95    30.84      30.84      17.16      25.59   2264.0   2264.0   2256.0  16096.0
   0.2086  2040.98  2040.98   819.39  1423.65    31.64      31.64      17.92      24.60   2040.0   2040.0   2320.0  16032.0
   0.2172  1522.06  1522.06   704.12  1233.45    27.33      27.33      16.33      23.52   2152.0   2152.0   2256.0  16016.0
   0.2256  1404.01  1404.01   568.03  1091.94    25.92      25.92      14.97      21.85   2184.0   2184.0   2272.0  15952.0
   0.2339  1146.56  1146.56   518.38   962.88    21.93      21.93      11.97      19.09   2128.0   2128.0   2240.0  16096.0
   0.2420   861.42   861.42   471.28   774.86    19.66      19.66      12.59      17.94   2224.0   2224.0   2336.0  16064.0
   0.2501   894.26   894.26   400.33   659.23    20.14      20.14      11.04      16.29   2128.0   2128.0   2224.0  16112.0
   0.2580   734.53   734.53   294.05   531.57    18.57      18.57       8.82      14.11   2136.0   2136.0   2320.0  15968.0
   0.2657   635.60   635.60   255.02   466.93    16.69      16.69       7.75      12.75   2144.0   2144.0   2160.0  16016.0
   0.2734   526.34   526.34   279.68   429.25    14.74      14.74       7.88      11.74   2192.0   2192.0   2288.0  16000.0
   0.2810   424.35   424.35   190.37   343.04    13.13      13.13       6.21      10.51   2128.0   2128.0   2272.0  15904.0
   0.2884   332.99   332.99   133.45   271.94    11.46      11.46       4.76       9.05   2112.0   2112.0   2160.0  15936.0
   0.2958   340.59   340.59   116.66   234.29    11.81      11.81       4.40       8.20   2168.0   2168.0   2320.0  16096.0
   0.3031   285.03   285.03    98.10   203.71    10.24      10.24       3.60       7.25   2128.0   2128.0   2160.0  16064.0
   0.3103   233.50   233.50    85.97   176.64     8.87       8.87       3.20       6.47   2272.0   2272.0   2336.0  16160.0
   0.3175   179.67   179.67    77.31   142.37     7.25       7.25       2.82       5.40   2008.0   2008.0   2256.0  16016.0
   0.3246   157.19   157.19    60.12   126.63     6.38       6.38       2.29       4.92   2296.0   2296.0   2144.0  16144.0
   0.3316   146.98   146.98    47.55   113.34     6.07       6.07       1.84       4.47   2040.0   2040.0   2368.0  16048.0
   0.3385   129.06   129.06    61.34   105.57     5.45       5.45       2.31       4.22   2200.0   2200.0   2192.0  15888.0
   0.3453   126.90   126.90    31.69    87.00     5.23       5.23       1.26       3.54   2200.0   2200.0   2336.0  16096.0
   0.3521   101.52   101.52    40.72    77.43     4.46       4.46       1.62       3.29   2104.0   2104.0   2144.0  16080.0
   0.3588    91.96    91.96    32.65    67.17     3.99       3.99       1.37       2.87   2128.0   2128.0   2256.0  16032.0
   0.3655   106.45   106.45    34.71    70.95     4.59       4.59       1.41       3.03   2184.0   2184.0   2336.0  15952.0
   0.3721    90.83    90.83    24.41    59.88     3.97       3.97       1.03       2.59   2104.0   2104.0   2112.0  16144.0
   0.3787    84.28    84.28    19.92    56.66     3.70       3.70       0.83       2.45   2176.0   2176.0   2336.0  15984.0
   0.3852    72.62    72.62    15.91    46.38     3.21       3.21       0.66       2.00   2272.0   2272.0   2176.0  16144.0
   0.3916    79.12    79.12    20.11    51.48     3.40       3.40       0.84       2.19   2032.0   2032.0   2288.0  15936.0
   0.3980    79.52    79.52    16.56    46.57     3.36       3.36       0.72       1.98   2136.0   2136.0   2128.0  16048.0
   0.4043    59.07    59.07    14.55    39.20     2.47       2.47       0.60       1.64   2288.0   2288.0   2416.0  16112.0
   0.4106    73.03    73.03    14.72    39.01     2.85       2.85       0.60       1.56   2008.0   2008.0   2128.0  16016.0
   0.4170    61.07    61.07    10.89    39.25     2.43       2.43       0.48       1.56   2208.0   2208.0   2288.0  16096.0
   0.4231    57.36    57.36     3.53    30.80     2.21       2.21       0.15       1.21   2328.0   2328.0   2176.0  16000.0
   0.4293    52.98    52.98    14.53    29.43     2.06       2.06       0.49       1.09   1976.0   1976.0   2368.0  15984.0
   0.4354    44.71    44.71     5.20    25.75     1.76       1.76       0.14       0.98   2136.0   2136.0   2160.0  15984.0
$$

The directional plots are along the directions of the moments of the anisotropy temperature matrix.  These are ordered such that direction 1 has maximum alignment with a*, directions 2 with b*, etc.


TWINNING ANALYSIS:

Global twinning statistics.

These tests rely on the fact that it is highly improbably that very weak or very strong reflections will coincide, therefore, the tails for the distribution of twinned datasets will be less pronounced

Data truncated to  37.15 -   1.95 A resolution
$TABLE: Cumulative intensity distribution:
$GRAPHS: Cumulative intensity distribution (Acentric and centric):N:1,2,3,4,5,6:
$$ Z Acent_theor Acent_twin Acent_obser Cent_theor Cent_obser $$
$$
   0.00000  0.00000  0.00000  0.07752  0.00000  0.12187
   0.04000  0.03921  0.00303  0.10160  0.15852  0.19266
   0.08000  0.07688  0.01151  0.13043  0.22270  0.24402
   0.12000  0.11308  0.02458  0.15876  0.27097  0.28294
   0.16000  0.14786  0.04148  0.18686  0.31084  0.31515
   0.20000  0.18127  0.06155  0.21396  0.34528  0.34386
   0.24000  0.21337  0.08420  0.24149  0.37579  0.37057
   0.28000  0.24422  0.10891  0.26766  0.40330  0.39620
   0.32000  0.27385  0.13524  0.29408  0.42839  0.41781
   0.36000  0.30232  0.16279  0.31883  0.45149  0.43660
   0.40000  0.32968  0.19121  0.34370  0.47291  0.45773
   0.44000  0.35596  0.22021  0.36703  0.49288  0.47796
   0.48000  0.38122  0.24953  0.39022  0.51158  0.49537
   0.52000  0.40548  0.27895  0.41173  0.52916  0.51231
   0.56000  0.42879  0.30829  0.43276  0.54574  0.52747
   0.60000  0.45119  0.33737  0.45353  0.56142  0.54241
   0.64000  0.47271  0.36607  0.47420  0.57629  0.55814
   0.68000  0.49338  0.39428  0.49270  0.59041  0.57267
   0.72000  0.51325  0.42190  0.51120  0.60386  0.58636
   0.76000  0.53233  0.44885  0.53024  0.61667  0.59783
   0.80000  0.55067  0.47507  0.54777  0.62891  0.60890
   0.84000  0.56829  0.50052  0.56467  0.64060  0.61848
   0.88000  0.58522  0.52516  0.58010  0.65180  0.62950
   0.92000  0.60148  0.54896  0.59508  0.66253  0.64271
   0.96000  0.61711  0.57191  0.61011  0.67281  0.65287
   1.00000  0.63212  0.59399  0.62379  0.68269  0.66250
   1.04000  0.64655  0.61521  0.63729  0.69218  0.67280
   1.08000  0.66040  0.63557  0.65037  0.70130  0.68283
   1.12000  0.67372  0.65507  0.66290  0.71008  0.69214
   1.16000  0.68651  0.67373  0.67463  0.71853  0.70084
   1.20000  0.69881  0.69156  0.68559  0.72668  0.70985
   1.24000  0.71062  0.70857  0.69709  0.73453  0.72018
   1.28000  0.72196  0.72480  0.70764  0.74210  0.72802
   1.32000  0.73286  0.74025  0.71787  0.74941  0.73560
   1.36000  0.74334  0.75495  0.72827  0.75646  0.74437
   1.40000  0.75340  0.76892  0.73820  0.76328  0.74975
   1.44000  0.76307  0.78220  0.74782  0.76986  0.75677
   1.48000  0.77236  0.79480  0.75583  0.77623  0.76344
   1.52000  0.78129  0.80675  0.76493  0.78238  0.77034
   1.56000  0.78986  0.81807  0.77323  0.78833  0.77801
   1.60000  0.79810  0.82880  0.78163  0.79410  0.78547
   1.64000  0.80602  0.83895  0.78930  0.79967  0.79197
   1.68000  0.81363  0.84855  0.79720  0.80508  0.79653
   1.72000  0.82093  0.85763  0.80440  0.81031  0.80183
   1.76000  0.82796  0.86621  0.81126  0.81538  0.80747
   1.80000  0.83470  0.87431  0.81779  0.82029  0.81379
   1.84000  0.84118  0.88196  0.82420  0.82505  0.82029
   1.88000  0.84741  0.88917  0.83089  0.82967  0.82499
   1.92000  0.85339  0.89597  0.83674  0.83414  0.82864
   1.96000  0.85914  0.90238  0.84263  0.83849  0.83424
   2.00000  0.86466  0.90842  0.84841  0.84270  0.83838
$$


The culmulative intensity, N(Z), plot is diagnostic for both twinning and tNCS.  For twinned data there are fewer weak reflections, therefore, N(Z) is sigmoidal for twinned data.  However, if both twinning and tNCS are present, the effects may cancel each out. Therefore the results of the L-test and patterson test should be consulted


L test for twinning: (Padilla and Yeates Acta Cryst. D59 1124 (2003))
L statistic =  0.496  (untwinned 0.5 perfect twin 0.375)
Data has used to  37.15 -   1.95 A resolution
   Relation between L statistics and twinning fraction:
      Twinning fraction = 0.000  L statistics = 0.500:
      Twinning fraction = 0.100  L statistics = 0.440:
      Twinning fraction = 0.500  L statistics = 0.375:



$TABLE: L test for twinning:
$GRAPHS: cumulative distribution function for |L|, twin fraction of 0.03:0|1x0|1:1,2,3,4:
$$ |L|   N(L) Untwinned Twinned $$
$$
0.0000 0.0000  0.0000   0.0000
0.0500 0.0531  0.0500   0.0749
0.1000 0.1036  0.1000   0.1495
0.1500 0.1537  0.1500   0.2233
0.2000 0.2035  0.2000   0.2960
0.2500 0.2534  0.2500   0.3672
0.3000 0.3033  0.3000   0.4365
0.3500 0.3529  0.3500   0.5036
0.4000 0.4026  0.4000   0.5680
0.4500 0.4528  0.4500   0.6294
0.5000 0.5024  0.5000   0.6875
0.5500 0.5530  0.5500   0.7418
0.6000 0.6033  0.6000   0.7920
0.6500 0.6528  0.6500   0.8377
0.7000 0.7032  0.7000   0.8785
0.7500 0.7534  0.7500   0.9141
0.8000 0.8046  0.8000   0.9440
0.8500 0.8552  0.8500   0.9679
0.9000 0.9064  0.9000   0.9855
0.9500 0.9568  0.9500   0.9963
1.0000 1.0000  1.0000   1.0000
$$


The Cumulative |L| plot for acentric data, where L = (I1-I2)/(I1+I2). This depends on the local difference in intensities.  The difference operators used link to the neighbouring reflections taking into account possible tNCS operators.
Note that this estimate is not as reliable as obtained via the H-test or ML Britton test if twin laws are available.  However, it is less prone to the effects of anisotropy than the H-test

Reference: Padilla, Yeates. A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Cryst. D59, 1124-30, 2003.


Mean acentric moments I from input data:

  /^2 =  2.049 (Expected =  2.000, Perfect Twin =  1.500)
  /^3 =  6.367 (Expected value =  6.000, Perfect Twin =  3.000)
  /^4 = 26.154 (Expected value = 24.000, Perfect Twin =  7.500)

$TABLE: Acentric Moments of I:
$GRAPHS: 2nd moment of I 2.049 (Expected value = 2, Perfect Twin = 1.5):0|0.437x0|5:1,2:
: 3rd & 4th Moments of I (Expected values = 6, 24, Perfect twin = 3, 7.5):0|0.437x0|36:1,3,4:
$$ 1/resol^2              $$
$$
  0.016259      2.192      7.598     34.557
  0.033025      1.966      5.484     18.896
  0.045395      1.903      5.104     17.089
  0.056081      2.014      6.323     27.068
  0.065661      1.972      5.767     21.550
  0.074524      1.811      4.677     15.750
  0.082905      1.978      5.951     24.286
  0.090780      2.112      7.568     37.779
  0.098298      1.856      5.037     17.763
  0.105535      1.849      4.911     16.508
  0.112475      2.019      6.417     29.520
  0.119172      1.964      5.836     22.789
  0.125756      1.993      6.077     25.080
  0.132163      1.964      5.385     17.983
  0.138339      2.020      6.194     24.806
  0.144378      2.124      7.034     31.363
  0.150293      2.009      5.977     23.038
  0.156067      2.135      6.900     28.552
  0.161777      2.085      6.560     26.213
  0.167358      1.893      5.157     17.727
  0.172827      2.097      6.622     26.634
  0.178187      2.142      6.878     28.248
  0.183554      2.043      6.351     26.254
  0.188730      2.007      5.753     20.860
  0.193880      2.078      6.207     23.163
  0.198987      2.197      7.558     34.224
  0.203948      2.080      6.525     27.712
  0.208960      2.055      6.486     27.534
  0.213788      2.202      7.961     42.187
  0.218661      2.068      6.418     25.691
  0.223410      2.217      8.196     41.686
  0.228061      2.114      6.420     24.176
  0.232789      1.998      5.828     21.278
  0.237429      2.112      6.668     26.976
  0.241920      2.096      6.306     23.081
  0.246471      2.151      7.013     29.623
  0.250946      2.143      6.996     29.583
  0.255431      2.189      7.944     40.059
  0.259800      2.190      7.007     28.046
  0.264149      1.983      5.869     22.466
  0.268508      2.272      8.294     43.624
  0.272823      1.915      5.430     19.359
  0.277093      2.068      6.333     26.602
  0.281267      1.953      5.343     17.841
  0.285497      2.203      7.418     33.154
  0.289656      2.170      6.668     24.766
  0.293801      2.188      6.941     27.667
  0.297828      2.141      7.022     30.689
  0.301943      2.097      6.961     32.391
  0.305998      2.161      6.919     28.183
  0.309912      2.070      6.085     22.211
  0.313861      2.169      6.684     26.303
  0.317879      2.239      7.809     37.404
  0.321815      2.144      6.888     29.284
  0.325691      2.245      8.164     43.512
  0.329480      2.191      7.272     31.782
  0.333438      2.196      6.969     28.474
  0.337261      2.146      7.327     34.042
  0.341028      2.255      7.343     31.168
  0.344779      2.495      9.462     46.868
  0.348612      2.056      5.791     20.674
  0.352364      2.290      7.386     29.343
  0.356059      2.231      6.868     25.908
  0.359725      2.388      8.559     42.659
  0.363376      2.394      8.589     42.595
  0.367073      2.415      8.726     41.644
  0.370767      2.399      8.088     34.531
  0.374343      2.400      8.667     43.711
  0.377937      2.361      8.148     37.216
  0.381584      2.469      8.252     34.751
  0.385119      2.670      9.725     46.890
  0.388657      2.008      5.701     21.555
  0.392209      2.408      7.359     26.888
  0.395668      2.829     10.143     44.415
  0.399269      2.433      7.924     32.571
  0.402689      2.286      7.153     30.150
  0.406213      2.720      9.818     45.806
  0.409591      2.723      9.382     40.785
  0.413023      2.452      8.313     37.634
  0.416473      2.426      7.429     28.091
  0.419942      3.358     13.822     71.550
  0.423268      3.045     11.015     48.614
  0.426603     12.455    119.731   1463.147
  0.430054      2.913      9.728     39.408
  0.433435      2.254      8.878     66.785
  0.436799     27.325    380.316   6636.069
$$

$TABLE: Centric Moments of I:
$GRAPHS: 2nd moment of I 3.270 (Expected = 3, Perfect Twin = 2):0|0.419x0|5:1,2:
: 3rd & 4th Moments of I (Expected = 15, 105, Perfect Twin = 6, 24):0|0.419x0|150:1,3,4:
$$ 1/resol^2              $$
$$
  0.021236      2.833     13.221     82.361
  0.061290      3.171     17.457    131.547
  0.101080      3.530     23.540    220.283
  0.141016      2.929     13.404     75.920
  0.180705      3.264     21.377    227.284
  0.220231      3.088     15.107     96.825
  0.259964      3.613     21.094    154.220
  0.299844      3.018     13.429     75.121
  0.339453      4.265     39.609    612.894
  0.379161      3.821     22.763    184.508
  0.418765      5.606     35.920    308.336
$$

First principles calculation has found no potential twinning operators

The appearance of twinning operators only indicates that the crystal symmetry and lattice symmetry permit twinning.  It does not mean that there is twinning present.  Only the presence of statistics consistent with twinning gives a strong indicator.

Twin fraction estimates based on global statistics:
  Twin fraction estimate from L-test:  0.03
  Twin fraction estimate from moments: 0.00

Twin fraction estimates by twinning operator

No operators found


TWINNING SUMMARY

Twinning fraction from L-Test:   0.03

NO Twinning detected

Analysis of mean intensity by parity for reflection classes

For each class, Mn(I/sig(I)) is given for even and odd parity with respect to the condition,
eg group 1: h even & odd; group 7 h+k+l even & odd; group 8 h+k=2n & h+l=2n & k+l=2n or not

 Range    Min_S    Dmax    Nref     1           2           3           4           5           6           7           8
                                    h           k           l          h+k         h+l         k+l        h+k+l    h+k,h+l,k+l
     1   0.00220  21.32     120 48.8 51.9   44.6 58.1   47.7 53.5   46.7 54.8   48.9 51.9   49.2 51.6   48.6 52.3   44.4 52.7
     2   0.00660  12.31     123 56.0 56.0   52.9 59.9   56.5 55.4   53.7 58.6   54.9 56.9   57.3 54.6   56.5 55.5   54.0 56.7
     3   0.01100   9.54     150 56.1 55.3   51.2 60.8   54.2 57.4   53.6 58.3   55.9 55.5   55.2 56.2   56.6 54.8   53.4 56.6
     4   0.01540   8.06     172 55.7 56.8   54.3 58.7   55.0 57.6   53.2 59.7   55.0 57.7   55.1 57.3   54.8 57.7   50.9 58.2
     5   0.01980   7.11     185 54.1 52.2   49.8 56.8   53.7 52.5   52.3 54.0   52.5 53.7   51.6 54.9   51.5 54.7   50.2 54.2
     6   0.02420   6.43     202 51.3 51.1   48.9 53.8   50.5 51.8   50.3 52.1   51.1 51.3   50.7 51.6   52.4 50.0   49.7 51.6
     7   0.02860   5.91     214 49.2 48.7   46.6 51.4   48.1 49.8   47.1 51.2   47.6 50.3   47.6 50.3   47.4 50.6   44.6 50.6
     8   0.03300   5.51     226 52.0 52.3   49.5 55.3   52.4 51.9   50.2 54.2   53.0 51.4   52.7 51.7   53.4 51.0   51.4 52.4
     9   0.03740   5.17     233 54.4 50.7   51.5 53.9   51.3 54.0   51.0 54.3   54.4 50.6   50.8 54.5   51.7 53.6   51.1 53.2
    10   0.04179   4.89     250 55.2 55.6   54.3 56.6   56.0 54.8   53.1 58.1   55.1 55.7   54.6 56.3   54.7 56.1   52.0 56.6
    11   0.04619   4.65     262 54.1 56.1   52.3 58.1   54.3 55.9   53.1 57.2   54.9 55.2   55.8 54.3   55.4 54.7   53.7 55.5
    12   0.05059   4.45     272 57.1 55.7   55.0 58.2   57.0 56.0   55.5 57.5   56.2 56.7   56.7 56.2   56.8 56.1   55.5 56.8
    13   0.05499   4.26     280 56.5 56.8   54.3 59.5   55.5 58.1   54.8 58.6   56.4 57.0   56.3 57.1   56.4 57.0   54.1 57.6
    14   0.05939   4.10     294 57.1 56.4   55.2 58.4   57.5 56.1   54.7 59.1   55.9 57.7   57.1 56.5   56.7 56.9   54.2 57.7
    15   0.06379   3.96     296 54.0 53.6   52.6 55.2   52.1 55.6   52.0 55.7   54.1 53.6   54.5 53.1   53.0 54.7   53.0 54.1
    16   0.06819   3.83     301 54.6 55.1   53.6 56.3   54.1 55.5   54.0 55.8   55.5 54.2   54.6 55.0   55.1 54.6   54.3 55.0
    17   0.07259   3.71     320 53.7 54.5   51.2 57.1   52.7 55.6   53.1 55.2   54.0 54.1   54.1 54.0   52.4 55.6   53.2 54.4
    18   0.07699   3.60     320 54.1 54.9   52.5 56.7   52.0 57.0   53.4 55.5   55.3 53.7   53.6 55.5   54.8 54.2   53.3 54.9
    19   0.08139   3.51     342 53.0 50.8   51.0 52.6   51.1 52.5   49.6 54.4   51.6 52.0   52.8 50.8   51.3 52.2   50.4 52.3
    20   0.08579   3.41     336 53.3 51.7   50.7 54.3   51.8 53.2   52.8 52.2   51.7 53.3   54.2 50.9   51.7 53.3   53.8 52.1
    21   0.09019   3.33     348 50.9 49.6   48.7 52.1   48.5 52.2   48.4 52.3   48.4 52.4   51.4 49.1   48.5 52.4   47.9 51.2
    22   0.09459   3.25     362 46.7 48.4   45.2 50.2   47.0 48.2   46.1 49.3   48.4 46.9   46.5 48.7   48.4 46.9   45.6 48.3
    23   0.09899   3.18     356 42.8 45.9   43.6 45.3   45.2 43.6   43.4 45.4   43.3 45.6   45.4 43.5   43.3 45.6   43.2 44.8
    24   0.10339   3.11     376 45.0 45.0   43.3 46.8   44.9 45.2   43.3 46.9   45.2 44.9   44.4 45.7   45.2 44.9   42.9 45.8
    25   0.10779   3.05     363 43.6 44.4   42.8 45.2   43.8 44.1   45.3 42.5   42.7 45.3   43.4 44.6   42.7 45.3   43.5 44.2
    26   0.11219   2.99     399 45.1 43.9   43.8 45.3   43.4 45.6   44.3 44.6   46.4 42.5   45.1 43.9   44.9 44.1   47.0 43.7
    27   0.11659   2.93     385 45.2 44.8   43.4 46.7   44.0 46.1   44.3 45.8   44.2 45.8   44.1 46.0   43.9 46.2   42.7 45.9
    28   0.12098   2.87     395 43.7 42.8   43.2 43.3   43.4 43.2   42.2 44.4   42.1 44.5   42.6 43.9   42.5 43.9   40.5 44.3
    29   0.12538   2.82     409 42.5 40.9   40.8 42.7   41.3 42.1   41.7 41.8   41.5 41.9   42.2 41.3   41.3 42.2   42.1 41.6
    30   0.12978   2.78     412 39.8 39.6   38.8 40.8   40.0 39.4   37.7 41.9   40.6 38.8   38.2 41.4   40.3 39.1   37.2 40.7
    31   0.13418   2.73     418 39.8 41.5   39.6 41.7   39.6 41.8   40.1 41.2   42.3 39.0   42.4 39.0   40.2 41.2   43.4 39.7
    32   0.13858   2.69     430 37.0 37.6   36.1 38.7   36.5 38.1   36.9 37.7   37.4 37.2   36.8 37.8   38.1 36.6   36.5 37.6
    33   0.14298   2.64     436 37.0 39.2   36.0 40.0   37.2 39.0   38.2 37.8   37.6 38.4   38.2 37.9   39.3 36.7   37.9 38.0
    34   0.14738   2.60     419 38.4 40.3   37.3 41.5   39.9 38.7   38.1 40.8   39.4 39.2   38.6 40.0   39.6 39.0   37.5 40.0
    35   0.15178   2.57     461 37.9 38.2   36.3 40.0   37.8 38.3   36.7 39.4   38.5 37.7   39.0 37.2   38.1 38.0   38.0 38.1
    36   0.15618   2.53     434 35.5 37.5   36.0 37.0   35.2 37.8   36.3 36.7   36.2 36.8   36.3 36.7   36.3 36.7   35.8 36.7
    37   0.16058   2.50     459 36.5 36.2   36.4 36.2   37.2 35.4   34.5 38.3   36.9 35.8   36.4 36.2   35.3 37.3   35.2 36.8
    38   0.16498   2.46     459 35.9 37.1   35.0 38.0   37.0 35.9   36.4 36.6   36.0 37.0   37.1 36.0   36.2 36.8   36.4 36.5
    39   0.16938   2.43     454 34.7 31.5   31.5 35.0   34.3 32.0   32.5 33.8   34.4 32.0   33.1 33.3   34.3 32.2   33.6 33.0
    40   0.17378   2.40     484 33.4 32.6   31.9 34.2   34.2 31.8   32.9 33.1   32.2 33.8   32.2 33.7   32.6 33.4   31.3 33.6
    41   0.17818   2.37     469 29.9 34.4   32.1 32.4   31.6 32.9   32.4 32.1   31.2 33.3   32.3 32.1   32.7 31.7   31.5 32.5
    42   0.18258   2.34     490 29.8 30.9   31.4 29.4   29.2 31.5   30.5 30.3   29.0 31.8   30.3 30.4   29.2 31.4   29.0 30.9
    43   0.18698   2.31     483 29.8 29.4   27.8 31.6   27.7 31.5   27.7 31.5   30.8 28.4   28.9 30.3   29.3 29.9   28.2 30.1
    44   0.19138   2.29     485 26.7 26.8   25.7 27.8   26.8 26.8   26.5 27.1   26.7 26.9   26.5 27.1   26.4 27.2   26.0 27.0
    45   0.19577   2.26     501 25.1 25.5   24.2 26.5   25.8 24.8   25.0 25.6   25.7 24.9   26.7 23.8   24.5 26.0   26.7 24.8
    46   0.20017   2.24     507 26.8 24.4   24.4 27.1   25.5 25.8   25.1 26.1   25.1 26.1   25.6 25.7   26.3 24.9   24.6 26.0
    47   0.20457   2.21     498 24.4 23.3   23.9 23.7   23.3 24.4   23.8 23.8   24.0 23.7   23.8 23.9   24.5 23.3   23.9 23.8
    48   0.20897   2.19     525 25.4 25.0   24.6 25.9   25.4 25.0   24.6 25.9   24.6 25.9   24.4 26.0   24.5 26.0   23.2 26.0
    49   0.21337   2.16     498 23.1 23.9   22.9 24.1   23.8 23.2   23.1 23.9   24.2 22.9   24.3 22.6   24.3 22.6   24.6 23.1
    50   0.21777   2.14     531 23.1 23.5   22.3 24.3   21.5 25.1   22.6 24.0   22.8 23.8   23.5 23.1   23.5 23.2   22.3 23.6
    51   0.22217   2.12     535 22.3 22.1   21.9 22.5   20.7 23.8   22.6 21.7   21.5 22.8   22.8 21.5   22.9 21.5   22.7 22.0
    52   0.22657   2.10     519 21.0 21.6   20.5 22.1   21.0 21.6   21.3 21.4   21.5 21.2   21.0 21.6   21.3 21.3   21.1 21.4
    53   0.23097   2.08     527 17.6 19.0   17.5 19.2   18.8 17.7   18.5 18.0   18.1 18.5   19.1 17.5   17.4 19.2   19.1 18.0
    54   0.23537   2.06     559 19.1 18.9   18.0 20.2   20.2 17.8   19.3 18.7   18.8 19.3   18.9 19.1   18.3 19.8   19.0 19.0
    55   0.23977   2.04     541 18.0 18.7   17.1 19.5   18.7 17.9   18.2 18.4   18.6 18.0   18.4 18.2   19.1 17.5   18.5 18.2
    56   0.24417   2.02     550 17.6 16.1   16.5 17.3   16.4 17.3   16.2 17.6   16.8 17.0   16.3 17.4   15.8 17.9   15.6 17.3
    57   0.24857   2.01     556 16.6 16.1   15.7 17.1   16.8 15.9   15.7 17.1   16.5 16.2   16.6 16.1   16.6 16.1   16.0 16.5
    58   0.25297   1.99     554 14.1 15.5   14.4 15.3   15.4 14.4   14.9 14.9   14.8 14.9   15.2 14.5   15.0 14.8   15.1 14.8
    59   0.25737   1.97     551 13.1 13.6   14.2 12.4   13.1 13.7   12.6 14.1   13.9 12.8   13.6 13.1   14.0 12.7   13.4 13.3
    60   0.26177   1.95     588 13.5 13.7   13.1 14.1   13.4 13.8   13.4 13.8   13.3 13.9   13.1 14.1   13.3 13.9   12.7 13.9

Totals:                   23624 34.8 35.0   33.9 36.0   34.6 35.2   34.3 35.5   34.8 35.0   34.9 34.9   34.8 35.1   34.2 35.1



INTENSITY TO AMPLITUDE CONVERSION:

Norm calculation summary:

      Calculation using Wilson prior.
      Anisotropy correction applied to norm.
      Number of outliers and ice ring reflections not used in norm calculation (Read (1999) ): 334
      During the truncate procedure 0 intensities have been flagged as unphysical (too small).
      Number of outliers detected in final norm (Read (1999) ): 0




$TABLE: Phil plot:
$GRAPHS: Phil plot - normalised values:A:1,2,3,4:
: Phil plot - vs sigma:A:1,5,6,7:
$$ Value Io/Sigma I/Sigma F/Sigma**0.5 Io/sigIo I/sigI F/sigF$$
$$
  -5.00000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.92500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.85000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.77500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.70000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.62500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.55000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.47500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.40000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.32500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.25000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.17500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.10000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -4.02500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.95000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.87500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.80000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.72500    0.50000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.65000    0.50000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.57500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.50000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.42500    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.35000    0.50000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.27500    0.50000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.20000    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.12500    0.50000    0.00000    0.00000    0.00000    0.00000    0.00000
  -3.05000    0.50000    0.00000    0.00000    0.50000    0.00000    0.00000
  -2.97500    0.00000    0.00000    0.00000    1.00000    0.00000    0.00000
  -2.90000    0.00000    0.00000    0.00000    1.50000    0.00000    0.00000
  -2.82500    1.50000    0.00000    0.00000    3.50000    0.00000    0.00000
  -2.75000    2.00000    0.00000    0.00000    4.50000    0.00000    0.00000
  -2.67500    1.00000    0.00000    0.00000    6.50000    0.00000    0.00000
  -2.60000    1.00000    0.00000    0.00000    9.00000    0.00000    0.00000
  -2.52500    1.00000    0.00000    0.00000    8.00000    0.00000    0.00000
  -2.45000    1.50000    0.00000    0.00000    8.00000    0.00000    0.00000
  -2.37500    1.00000    0.00000    0.00000   12.00000    0.00000    0.00000
  -2.30000    0.50000    0.00000    0.00000   14.50000    0.00000    0.00000
  -2.22500    2.50000    0.00000    0.00000   14.50000    0.00000    0.00000
  -2.15000    3.50000    0.00000    0.00000   15.50000    0.00000    0.00000
  -2.07500    1.50000    0.00000    0.00000   17.00000    0.00000    0.00000
  -2.00000    1.00000    0.00000    0.00000   20.00000    0.00000    0.00000
  -1.92500    2.50000    0.00000    0.00000   25.50000    0.00000    0.00000
  -1.85000    3.00000    0.00000    0.00000   29.50000    0.00000    0.00000
  -1.77500    4.50000    0.00000    0.00000   31.00000    0.00000    0.00000
  -1.70000    5.50000    0.00000    0.00000   34.50000    0.00000    0.00000
  -1.62500    6.00000    0.00000    0.00000   45.00000    0.00000    0.00000
  -1.55000    6.00000    0.00000    0.00000   51.00000    0.00000    0.00000
  -1.47500    7.00000    0.00000    0.00000   52.50000    0.00000    0.00000
  -1.40000    8.50000    0.00000    0.00000   61.50000    0.00000    0.00000
  -1.32500   11.99999    0.00000    0.00000   78.99998    0.00000    0.00000
  -1.25000   19.00000    0.00000    0.00000   94.00000    0.00000    0.00000
  -1.17500   22.50000    0.00000    0.00000  101.50001    0.00000    0.00000
  -1.10000   19.50000    0.00000    0.00000  111.00000    0.00000    0.00000
  -1.02500   25.00001    0.00000    0.00000  118.50000    0.00000    0.00000
  -0.95000   34.50000    0.00000    0.00000  133.00000    0.00000    0.00000
  -0.87500   43.00000    0.00000    0.00000  154.50000    0.00000    0.00000
  -0.80000   58.50000    0.00000    0.00000  170.50000    0.00000    0.00000
  -0.72500   74.99999    0.00000    0.00000  188.49999    0.00000    0.00000
  -0.65000   88.00000    0.00000    0.00000  200.50000    0.00000    0.00000
  -0.57500  113.00001    0.00000    0.00000  217.00001    0.00000    0.00000
  -0.50000  147.00000    0.00000    0.00000  222.50000    0.00000    0.00000
  -0.42500  177.99999    0.00000    0.00000  228.99999    0.00000    0.00000
  -0.35000  237.50001    0.00000    0.00000  253.50000    0.00000    0.00000
  -0.27500  341.99999    0.00000    0.00000  264.00000    0.00000    0.00000
  -0.20000  480.49999    0.00000    0.00000  280.00000    0.00000    0.00000
  -0.12500  669.50000    0.00000    0.00000  305.50000    0.00000    0.00000
  -0.05000 1387.99999  415.49999    1.50000  321.00000    0.00000    0.00000
   0.02500 2610.00001 2041.00001  180.50000  333.50000    0.00000    0.00000
   0.10000 3133.50000 3472.50001  620.50001  332.00000    0.00000    0.00000
   0.17500 2962.00001 3791.99999 1192.99998  333.00000    0.00000    0.00000
   0.25000 2795.00000 3817.00000 1812.50000  354.00000    0.00000    0.00000
   0.32500 2562.50005 3521.00007 2563.99986  356.50000    0.00000    0.00000
   0.40000 2367.49999 3093.99997 3362.00006  346.50000    0.00000    0.00000
   0.47500 2230.50001 2724.00003 3901.49997  373.00000    0.00000    0.00000
   0.55000 2071.99998 2399.99995 3949.49996  382.99999    0.00000    0.00000
   0.62500 1915.50000 2071.00000 3690.50000  375.50000    0.00000    0.00000
   0.70000 1724.00003 1811.00003 3429.00004  372.50000   35.49999    0.00000
   0.77500 1588.00002 1670.50003 3118.50011  358.00000  236.49989    0.00000
   0.85000 1481.49995 1505.99993 2865.49995  380.00001  372.49998    0.00000
   0.92500 1351.99998 1300.49997 2590.99994  389.00000  310.99999    0.00000
   1.00000 1236.00000 1185.50000 2298.50000  395.00000  233.00000    0.00000
   1.07500 1107.49992 1098.49992 2139.99992  389.49997  645.00058    0.00000
   1.15000 1073.49998 1052.49999 1912.00011  345.00001 1444.49978    0.00000
   1.22500 1032.99996  999.49995 1645.99994  339.00001 1741.49997    0.00000
   1.30000  928.00004  862.50008 1457.00012  336.50002 1575.00016   10.99999
   1.37500  845.50000  763.00000 1219.00000  331.00000 1328.00000  170.50000
   1.45000  753.49994  701.49997  987.49989  324.49998 1120.99990  334.00002
   1.52500  710.00000  673.00000  833.00004  313.99999  947.50006  301.50003
   1.60000  653.99996  631.49997  690.49995  316.00000  783.99995  214.99998
   1.67500  594.50000  571.50002  560.50007  301.00001  657.50007  138.50005
   1.75000  578.00000  534.00000  458.00000  293.00000  570.50000   97.00000
   1.82500  537.99997  489.49997  375.49995  296.50000  504.99996   96.50000
   1.90000  471.00003  447.50001  297.50003  275.50001  459.50001   87.00001
   1.97500  429.00000  408.49999  220.49998  268.50001  420.99998  221.50009
   2.05000  384.50006  344.00005  167.50002  287.00000  377.50002  705.49957
   2.12500  331.50000  306.00000  141.50000  279.00000  347.50000 1153.50000
   2.20000  323.50000  301.99999  112.99998  265.50000  315.49998 1215.99994
   2.27500  321.49999  306.00003   83.49997  252.49998  287.49998 1105.99984
   2.35000  306.50003  288.50007   62.00003  241.00001  272.50002  975.00018
   2.42500  267.00004  249.50001   44.50001  236.00000  253.50002  843.00008
   2.50000  223.00000  224.50000   31.00000  226.00000  245.50000  754.50000
   2.57500  217.50001  208.00000   25.50000  216.00000  245.49999  676.99994
   2.65000  215.99997  200.49999   21.49999  216.50001  230.49997  589.99991
   2.72500  187.50004  178.50004   14.00001  220.00000  220.50000  520.00009
   2.80000  169.50000  165.50000    9.50000  226.49999  225.49999  454.00004
   2.87500  162.50000  161.00000    6.50000  224.00000  207.50000  402.00000
   2.95000  157.00000  144.99999    6.50000  205.49999  185.50000  371.99999
   3.02500  151.49999  142.00001    6.00000  204.00002  177.49998  329.99992
   3.10000  147.99999  140.00002    4.00000  200.00003  172.49999  288.00003
   3.17500  132.50002  122.00001    2.50000  186.00000  183.99999  279.50000
   3.25000  101.00000   95.50000    2.50000  186.00000  195.00000  272.00000
   3.32500   96.50001   91.00001    2.00000  178.99999  185.49998  255.99999
   3.40000   92.99997   92.49998    0.50000  178.00002  170.99999  239.99998
   3.47500   95.49996   90.49998    0.50000  184.50000  162.50002  219.50003
   3.55000   98.50002   90.50001    1.00000  174.50001  155.50000  197.00001
   3.62500   85.50000   83.00000    1.00000  173.00000  153.50000  187.00000
   3.70000   82.00000   75.49999    0.50000  180.00000  145.49999  188.50000
   3.77500   66.49997   63.49999    0.00000  159.99995  153.50004  182.99998
   3.85000   56.99999   55.50001    0.50000  151.99997  143.00006  172.50001
   3.92500   57.50000   52.00000    0.50000  158.00001  141.99997  156.50001
   4.00000   52.50000   49.00000    0.50000  153.00000  154.50000  147.50000
   4.07500   47.00002   42.50002    0.50000  154.50000  144.49999  150.50000
   4.15000   39.99999   40.00000    0.00000  144.99997  151.00001  132.99995
   4.22500   32.50001   36.00001    0.00000  140.99998  138.00005  124.49998
   4.30000   37.00004   37.00003    0.00000  146.50000  121.00001  138.00002
   4.37500   40.00000   36.00000    0.00000  147.50000  131.50000  129.50000
   4.45000   36.99999   33.49998    0.00000  148.50000  142.49999  115.50001
   4.52500   39.00000   37.00000    0.00000  136.49997  127.99996  119.50001
   4.60000   33.50001   33.00001    0.00000  128.49999  117.99998  116.50002
   4.67500   30.50001   28.99999    0.00000  137.00003  119.99998  109.00001
   4.75000   31.50000   29.50000    0.00000  144.50000  116.50000  114.00000
   4.82500   28.00001   26.00003    0.00000  129.50009  118.49999  112.00003
   4.90000   16.99998   17.49999    0.00000  113.50000  118.50000  108.50001
   4.97500   15.99998   19.49999    0.00000  118.99999  116.00000  110.00000
   5.05000   29.50003   28.00002    0.00000  127.00002  130.00008  107.49999
   5.12500   25.50000   20.50000    0.00000  124.00000  121.50000   99.50000
   5.20000   13.00002   10.50000    0.00000  111.50003  104.49997  103.49995
   5.27500   13.50001   14.50001    0.00000  112.00002  124.00003  105.49998
   5.35000   19.99999   19.50000    0.00000  125.49998  116.50005   96.00000
   5.42500   17.99997   17.99998    0.00000  126.99997  104.50004   90.99998
   5.50000   14.50000   15.00000    0.00000  115.00000  107.50000   83.50000
   5.57500   13.00002   13.50001    0.00000  109.99999  106.49998   82.99998
   5.65000    9.00000   11.50000    0.00000  111.50000  103.49998   78.99998
   5.72500   11.99999   11.00000    0.00000  113.50000  109.99996   77.49999
   5.80000   12.49998    9.49999    0.00000  122.00004  116.49996   85.00001
   5.87500    9.00000    8.50000    0.00000  116.00000  103.00000   87.00000
   5.95000    8.00001    8.50000    0.00000  114.99994   94.50001   83.50002
   6.02500    8.50000    8.00000    0.00000  102.99994   96.50001   87.50002
   6.10000    8.50000    6.50000    0.00000   86.99998   93.00002   94.50000
   6.17500    7.50000    6.50001    0.00000   97.50001  101.00008   90.99998
   6.25000    8.00000    7.00000    0.00000   93.50000  103.50000   87.50000
   6.32500    6.00001    5.50000    0.00000   89.49999   88.50001   81.50003
   6.40000    4.50000    5.50000    0.00000   93.50000   90.00001   80.50001
   6.47500    3.50000    4.00001    0.00000  101.99998   95.49999   81.00001
   6.55000    2.50000    3.50001    0.00000   98.99995   87.49995   76.50000
   6.62500    4.50000    4.50000    0.00000   86.50000   79.00000   71.50000
   6.70000    6.50000    5.49999    0.00000   84.50000   81.00000   72.99997
   6.77500    8.00000    6.50000    0.00000   86.00000   77.49999   73.49999
   6.85000    7.00001    5.00000    0.00000   87.00000   72.50000   74.49998
   6.92500    4.50000    4.50000    0.00000   80.49997   74.50002   71.99995
   7.00000    4.00000    4.00000    0.00000   75.00000   79.50000   65.00000
   7.07500    2.50001    3.99999    0.00000   83.49996   87.99996   68.49999
   7.15000    2.50000    2.49999    0.00000   96.00001   86.49998   66.99999
   7.22500    3.50000    2.99999    0.00000   89.00003   79.50000   76.99997
   7.30000    4.00001    3.99999    0.00000   81.50002   78.99999   77.49994
   7.37500    3.00000    1.50000    0.00000   82.50000   74.50000   60.00000
   7.45000    1.99999    2.49999    0.00000   75.50002   74.99998   59.49998
   7.52500    2.50000    3.50000    0.00000   79.50002   87.50002   74.50003
   7.60000    2.00000    2.50000    0.00000   84.50001   86.50003   77.50002
   7.67500    0.99999    0.99999    0.00000   82.00000   74.49999   65.49998
   7.75000    1.00000    0.50000    0.00000   75.00000   70.00000   68.50000
   7.82500    2.00000    1.50000    0.00000   73.99997   71.99997   74.00001
   7.90000    1.00000    1.50000    0.00000   68.49997   73.49999   68.99999
   7.97500    1.00000    1.50000    0.00000   69.99997   64.50001   69.49999
   8.05000    2.50000    2.00000    0.00000   68.99993   61.50001   71.49999
   8.12500    2.00000    1.00000    0.00000   61.00000   67.50000   69.00000
   8.20000    0.50000    0.99999    0.00000   70.99998   75.49998   64.50002
   8.27500    0.49999    1.00001    0.00000   70.50005   79.00001   59.50002
   8.35000    1.00000    1.00001    0.00000   74.50009   74.99997   55.99998
   8.42500    2.50001    2.50000    0.00000   79.99998   69.99999   54.00000
   8.50000    2.50000    1.50000    0.00000   78.00000   58.50000   69.00000
   8.57500    0.50000    0.50000    0.00000   64.50007   52.49998   70.50007
   8.65000    0.49999    0.50001    0.00000   55.49994   61.99994   61.49995
   8.72500    1.00000    1.00001    0.00000   66.50006   64.99997   72.00006
   8.80000    1.00000    0.99999    0.00000   69.99999   72.00005   61.49992
   8.87500    1.50000    1.00000    0.00000   64.00000   70.00000   51.50000
   8.95000    1.50000    1.50000    0.00000   66.49997   58.00000   61.49998
   9.02500    0.50001    1.00000    0.00000   67.50006   60.49997   61.50004
   9.10000    0.50001    1.00000    0.00000   57.99996   61.49998   57.49999
   9.17500    0.50000    0.50000    0.00000   57.50002   60.00000   54.99999
   9.25000    1.50000    1.50000    0.00000   63.00000   61.00000   52.50000
   9.32500    1.50001    1.50001    0.00000   64.00001   63.49999   56.99997
   9.40000    0.49999    0.49999    0.00000   61.50002   61.50004   59.00003
   9.47500    0.49999    0.49999    0.00000   67.00007   62.00004   57.50002
   9.55000    0.50000    0.50000    0.00000   71.49999   60.49997   58.50000
   9.62500    1.00000    1.00000    0.00000   64.50000   63.00000   57.00000
   9.70000    0.50000    0.50000    0.00000   56.00002   64.00004   58.99998
   9.77500    0.00000    0.49999    0.00000   54.49997   50.00007   56.50006
   9.85000    0.00000    1.00000    0.00000   53.99997   53.50011   54.50004
   9.92500    1.00001    0.50000    0.00000   57.00003   64.00000   66.50004
$$



ctruncate: Normal termination
Times: User:       6.5s System:    0.1s Elapsed:     0:07  
# command line: # ctruncate '-hklin' 'AUTOMATIC_DEFAULT_scaled.mtz' '-hklout' 'NATIVE_truncated.mtz' '-colin' '/*/*/[IMEAN,SIGIMEAN]' '-xmlout' '44_truncate.xml'